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Abstract

Recursive types and bounded quantification are prominent features in many modern programming
languages, such as Java, C#, Scala or TypeScript. Unfortunately, the interaction between recursive
types, bounded quantification and subtyping has shown to be problematic in the past. Consequently,
defining a simple foundational calculus that combines those features and has desirable properties,
such as decidability, transitivity of subtyping, conservativity and a sound and complete algorithmic
formulation has been a long-time challenge.

This paper shows how to extend 𝐹≤ with iso-recursive types in a new calculus called 𝐹
𝜇
≤ . 𝐹≤

is a well-known polymorphic calculus with bounded quantification. In 𝐹
𝜇
≤ we add iso-recursive

types, and correspondingly extend the subtyping relation with iso-recursive subtyping using the
recently proposed nominal unfolding rules. In addition we use so-called structural folding/unfolding
rules for typing iso-recursive expressions, inspired by the structural unfolding rule proposed by Abadi,
Cardelli, and Viswanathan (1996). The structural rules add expressive power to the more conventional
folding/unfolding rules in the literature, and they enable additional applications. We present several
results, including: type soundness; transitivity; the conservativity of 𝐹𝜇

≤ over 𝐹≤ ; and a sound and
complete algorithmic formulation of 𝐹𝜇

≤ . We study two variants of 𝐹𝜇
≤ . The first one uses an extension

of the kernel 𝐹≤ (a well-known decidable variant of 𝐹≤ ). This extension accepts equivalent rather
than equal bounds and is shown to preserve decidable subtyping. The second variant employs the
full 𝐹≤ rule for bounded quantification and has undecidable subtyping. Moreover, we also study
an extension of the kernel version of 𝐹𝜇

≤ , called 𝐹
𝜇∧
≤≥ , with a form of intersection types and lower

bounded quantification. All the properties from the kernel version of 𝐹𝜇
≤ are preserved in 𝐹

𝜇∧
≤≥ . All

the results in this paper have been formalized in the Coq theorem prover.

1 Introduction

Recursive types and bounded quantification are two prominent features in many modern
programming languages, such as Java, C#, Scala or TypeScript. Bounded quantification
was introduced by Cardelli and Wegner (1985) in the Fun language, and has been widely
studied (Curien and Ghelli, 1992; Cardelli et al., 1994; Pierce, 1994). Bounded quantifica-
tion addresses the interaction between parametric polymorphism and subtyping, allowing
polymorphic variables to have subtyping bounds. Recursive types are needed in practically
all programming languages to model recursive data structures (such as lists or trees) or
recursive object types in Object-Oriented Programming (OOP) languages to encode binary
methods (Bruce et al., 1995). For adding recursive types to a language with subtyping, it is
desirable to have recursive subtyping between recursive types. The first rules for recursive
1 BOTH AUTHORS CONTRIBUTED EQUALLY TO THIS WORK.
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subtyping, due to Cardelli (1985), are the well-known Amber rules. Recursive subtyping has
been studied in two different forms: equi-recursive subtyping (Amadio and Cardelli, 1993;
Brandt and Henglein, 1998; Gapeyev et al., 2003), and iso-recursive subtyping (Ligatti
et al., 2017; Bengtson et al., 2011; Zhou et al., 2020, 2022). In equi-recursive subtyping,
recursive types and their unfoldings are considered to be equal. In contrast, in iso-recursive
subtyping they are only isomorphic, and explicit fold/unfold operators are necessary to
witness the isomorphism.

From the mid-80s and throughout the 90s there was a lot of work on establishing
the type-theoretic foundations for OOP. Both recursive subtyping, as well as bounded
quantification played a major part on this effort. The two features were perceived to be
important to model objects in some forms of object encodings. At that time the key ideas
around 𝐹≤ (Curien and Ghelli, 1992; Cardelli and Wegner, 1985; Cardelli et al., 1994),
which is a polymorphic calculus with bounded quantification (but no recursive types), were
reasonably well understood due to the early work on the Fun language by Cardelli and
Wegner (1985). Therefore 𝐹≤-like calculi were being used in foundational work on OOP.
Some landmark papers on the foundations of OOP, which established important results
such as the distinction between inheritance and subtyping (Cook et al., 1989), F-bounded
quantification (Canning et al., 1989), or encodings of objects (Cook et al., 1989; Abadi
et al., 1996; Bruce et al., 1999), essentially assumed some 𝐹≤ variant with recursive types.
Typically, recursive subtyping was supported via the Amber rules. However, extensions of
𝐹≤ with recursive types had still not been developed and formally studied when many of
those works were published.

After the first formalization of 𝐹≤ (Curien and Ghelli, 1992), Ghelli (1993) questioned
this state-of-affairs, which implicitly assumed that the extension of 𝐹≤ with recursive types
was straightforward. He conducted the first formal study for such an extension, and showed
a wide range of negative results. Most importantly, he showed that equi-recursive types are
not conservative over full 𝐹≤ . In other words, adding equi-recursive types to full 𝐹≤ changes
the expressive power of the subtyping relation, even when the types being compared do not
involve any recursive types.

The simple addition of equi-recursive types allows well-formed, but invalid subtyping
statements in 𝐹≤ to be valid in an extension with recursive types. Ghelli (1993) also shows
that applying equi-recursive types to full 𝐹≤ invalidates transitivity elimination: we cannot
drop the transitivity rule without losing expressive power. In addition, while subtyping in
full 𝐹≤ is undecidable (Pierce, 1994), the change in expressive power reopened questions
about the decidability or undecidability of the system.

Even if we choose the weaker form of bounded quantification present in the Fun language
and kernel 𝐹≤ , the natural extension of Amadio and Cardelli (1993)’s algorithm to kernel 𝐹≤
is incomplete (Colazzo and Ghelli, 2005). In kernel 𝐹≤ , only universal quantifiers with
equal bounds are allowed to be in a subtyping relation. This more restrictive formulation
of bounded quantification is known to be decidable. However, complications still arise
after adding equi-recursive types to kernel 𝐹≤ . Instead of Amadio and Cardelli (1993)’s
meet 2 times rules, Colazzo and Ghelli (2005) gave an alternative meet 3 times algorithm,
accompanied by a very challenging correctness proof, showing that the subtyping relation
is transitive and complete, but did not prove conservativity. Based on an earlier draft from
Colazzo and Ghelli (2005), Jeffrey (2001) extended the system and proved it correct and
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Table 1: Comparison among different works.

Ghelli
(1993)

Colazzo and
Ghelli (2005)

Jeffrey
(2001)

Abadi et al.
(1996)

This
Work

Kernel/Full 𝐹≤ full kernel full kernel full kernel full
Equi-/Iso-Recursive equi equi equi equi iso iso iso
Transitivity × ✓ ✓ ✓ built-in ✓ ✓

Decidability ✓ ✓∖ ✓ ✓ ×
Conservativity × × ✓ ✓

Type System ✓ ✓ ✓

Algorithmic Typing ✓ ✓

Type Soundness ✓ ✓

Modularity × × × × ✓ ✓

Mechanized Proofs × × × × × ✓ ✓

A × symbol denotes a negative result (the property or feature does not hold). A ✓ denotes a
positive result, while ✓∖denotes a partial result (such as semi-decidability). Whitespace denotes that
the property/feature has not been studied or it is unknown.

complete. By transferring the polar bisimulations (Sangiorgi and Milner, 1992) technique
from concurrency theory, Jeffrey (2001)’s system is more general than Colazzo and Ghelli’s,
but it is only partially decidable. It is decidable for kernel 𝐹≤ with equi-recursive types,
but for full 𝐹≤ with equi-recursive types, only when the algorithm terminates it returns
the correct answer, but it may not terminate. Furthermore, although being more powerful,
Jeffrey (2001)’s full system is not conservative over full 𝐹≤ either.

Table 1 summarizes the results of previous work on extending 𝐹≤ with recursive types.
Note that, in the table, the Type System row simply means whether the typing relation of the
𝐹≤ extension with recursive types has been studied/presented in the paper. For properties
such as type soundness, decidability or conservativity, there is a corresponding entry in the
table, which states whether the property was proved or not. Modularity here means whether
the original rules and definitions of 𝐹≤ are the same or they need to be modified.

The proofs in all the 4 systems with equi-recursive types are complex because of the strong
recursion, as can be seen from the literature. Adding equi-recursive subtyping requires
major changes in existing definitions, rules and proofs compared to 𝐹≤ , making most of
the existing metatheory on 𝐹≤ not reusable. No prior work has proved the conservativity
of kernel 𝐹≤ with equi-recursive types. This result is likely to be hard to prove because of
the numerous non-modular changes in 𝐹≤ induced by the introduction of equi-recursive
subtyping. Furthermore, in those works the full type systems are not provided.

Motivated by the technical challenges and negative results posed by equi-recursive types,
some researchers set their sights on iso-recursive types. In their work on object encodings,
Abadi et al. (1996) proposed the 𝐹<:𝜇 calculus, which supports bounded universal types,
bounded existential types and iso-recursive types via the Amber rules. However, reflexivity
and transitivity are built-in, so the system is not algorithmic. Furthermore, while they
presented the typing, subtyping and reduction rules, they have not proved any properties,
including type soundness or the conservativity over full 𝐹≤ . One potential reason for the
absence of technical results is that the iso-recursive Amber rules are hard to work with
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formally (Ligatti et al., 2017; Backes et al., 2014; Zhou et al., 2020, 2022): it is difficult to
prove results such as transitivity, or define sound and complete algorithmic formulations.

This paper shows how to extend 𝐹≤ with iso-recursive types in a calculus called 𝐹
𝜇
≤ . In 𝐹

𝜇
≤

we add iso-recursive subtyping using the recently proposed nominal unfolding rules (Zhou
et al., 2022). The nominal unfolding rules have been formally proved to be type sound,
and shown to have the same expressive power as the well-known iso-recursive Amber
rules (Cardelli, 1985). Moreover, the nominal unfolding rules address the difficulties of
working formally with the (iso-recursive) Amber rules. With the nominal unfolding rules,
proving transitivity and other properties is easy, also enabling developing algorithmic
formulations of subtyping instead. Furthermore, a nice property of the nominal unfolding
rules is that they are modular, allowing an existing calculus to be extended with recursive
types without major impact on existing definitions and proofs. In other words they allow
reusing most existing metatheory and definitions that existed before the addition of iso-
recursive types. Our work shows that the nominal unfolding rules proposed by Zhou et al.
(2022) can be integrated modularly into 𝐹≤ subtyping rules, while retaining desirable
properties. In particular, we prove, for the first time, the conservativity of an extension of
𝐹≤ with recursive types over the original 𝐹≤ .

In 𝐹
𝜇
≤ we use the so-called structural folding/unfolding rules for typing expressions with

recursive types, inspired by the structural unfolding rule proposed by Abadi et al. (1996).
The structural rules add expressive power to the more conventional folding/unfolding rules
in the literature, and they enable additional applications. In particular, we illustrate how
the structural rules play an important role in modeling encodings of objects, as well as
encodings of algebraic datatypes with subtyping.

We study two variants of 𝐹
𝜇
≤ . The first one has a generalization of the kernel 𝐹≤ rule

for bounded quantification that accepts equivalent rather than equal bounds. The second
variant uses the rule of full 𝐹≤ for bounded quantification. We will refer to the first variant as
kernel 𝐹𝜇

≤ , and to the second variant as full 𝐹𝜇
≤ . We present several results, including: type

soundness; transitivity and (un)decidability of subtyping; the conservativity of 𝐹𝜇
≤ over 𝐹≤ ;

and a sound and complete algorithmic formulation of 𝐹𝜇
≤ . The kernel 𝐹𝜇

≤ variant is proved to
have decidable subtyping, whereas the full 𝐹𝜇

≤ variant has undecidable subtyping. We also
present an extension of 𝐹𝜇

≤ , called 𝐹
𝜇∧
≤≥ , which has a bottom type, intersection types, and

lower bounded quantification in addition to the conventional (upper) bounded quantification
of 𝐹≤ . As we show, lower bounded quantification is useful to model the subtyping of
algebraic datatypes. Intersection types are used to encode record types, similarly to how
the Dependent Object Calculus (DOT) (Rompf and Amin, 2016) encodes object types. All
the results in this paper have been formalized in the Coq theorem prover.

In summary the contributions of this paper are:
• 𝐹

𝜇
≤ : extending 𝐹≤ with iso-recursive types. We have two variants of 𝐹

𝜇
≤ : kernel

𝐹
𝜇
≤ as the extension of kernel 𝐹≤ with iso-recursive subtyping, and full 𝐹𝜇

≤ as the
extension of full 𝐹≤ with iso-recursive subtyping. We prove several properties for
𝐹
𝜇
≤ , including: type soundness; transitivity of subtyping; decidability of subtyping

of kernel 𝐹𝜇
≤ ; undecidability of subtyping of full 𝐹𝜇

≤ ; and the unfolding lemma, a key
property to ensure type soundness.
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• The conservativity of 𝐹
𝜇
≤ over 𝐹≤ . Conservativity is an expected but non-trivial

property that has eluded past work on the combination of bounded quantification and
recursive types. We show that 𝐹𝜇

≤ is conservative over 𝐹≤ .
• Type soundness for the structural folding/unfolding rules. We present the first

formal type soundness proof for the structural unfolding rule, and we also present a
new structural folding rule, together with its type soundness.

• Decidability for kernel 𝐹
𝜇
≤ . We show that kernel 𝐹

𝜇
≤ is decidable. The measure

needed for decidability is non-trivial because there are significant differences in
the measures for kernel 𝐹≤ and nominal unfoldings. We show how to develop a
new measure that can account for both features at once. In addition, due to our
generalization of the kernel rule to allow equivalent bounds, a key property for
decidability is that equivalent types have equal sizes.

• An extension of 𝐹𝜇
≤ with intersection types, both upper and lower bounded quan-

tification: We present an extended calculus, called 𝐹
𝜇∧
≤≥ , with a form of intersection

types, both top and bottom types, and both upper and lower bounded quantification,
and illustrate its applicability to encodings of datatypes with subtyping.

• Coq formalization: We have formalized all the calculi and proofs in this paper in
Coq, and made the formalization available online at https://github.com/juda/
Recursive-Subtyping-for-All/tree/main/JFP.

Differences to conference version. This article is a substantial enhancement of the con-
ference paper (Zhou et al., 2023). It introduces three major improvements over the original
conference paper. The first improvement is the extension of our results to the full 𝐹𝜇

≤ calcu-
lus, along with proofs demonstrating its type soundness and its conservativity over 𝐹≤ . The
initial conference version only addressed the addition of iso-recursive types into kernel 𝐹≤
and left the extension to the full variant as an unresolved issue. The second improvement
is a further generalization of the unfolding lemma that is capable of dealing with full 𝐹≤ ,
intersection types and all the other extensions in this paper. The unfolding lemma is a central
lemma in the metatheory of iso-recursive subtyping, and it is also where the main challenge
in the metatheory lies. In the conference version, the generalized unfolding lemma was not
able to deal with full 𝐹≤ . Our new generalization addresses this issue, and it is shown to
be general and applicable to a variety of extensions. The final improvement involves the
combination of several important features within the system 𝐹

𝜇∧
≤≥ , and a much more detailed

overview of 𝐹𝜇∧
≤≥ . Unlike the conference version, which did not include intersection types,

the updated 𝐹
𝜇∧
≤≥ can model objects using structural folding/unfolding rules, intersection

types and single-field record types. This alternative way to model objects is inspired by,
and aligns closely with, the encoding of objects in the DOT calculus.

2 Overview

This section provides an overview of our work. We first briefly review basic concepts and
some applications. Then we show our key ideas and results.

https://github.com/juda/Recursive-Subtyping-for-All/tree/main/JFP
https://github.com/juda/Recursive-Subtyping-for-All/tree/main/JFP
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2.1 Bounded Quantification and Recursive Subtyping

Bounded Quantification. Bounded quantification allows types to be abstracted by type
variables with a subtyping constraint (or bound). The standard calculus with bounded
quantification, 𝐹≤ (Cardelli and Wegner, 1985; Curien and Ghelli, 1992; Cardelli et al.,
1994), has two common variants when it comes to subtyping universal types. The full 𝐹≤
variant (Curien and Ghelli, 1992; Cardelli et al., 1994) compares bounded quantifiers with
the following rule:

S-fullall
Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≤ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A1).B ≤ ∀(𝛼 ≤ A2).C

The most significant characteristic of full 𝐹≤ is that it allows two bounded quantifiers to
be contravariant on their bound types 𝐴1 and 𝐴2 when being compared. However, the rich
expressive power of full 𝐹≤ results in an undecidable subtyping relation (Pierce, 1994),
which is undesirable. In addition, as Ghelli (1993) demonstrates, the rule S-fullall may
even prevent conservative extensions of 𝐹≤ in the presence of additional features.

There are several ways to restrict bounded quantification to a fragment with decidable
subtyping, such as removing top types, or assuming no bounds when comparing type
abstraction bodies (Castagna and Pierce, 1994). Among those the most widely used variant
is the kernel 𝐹≤ calculus. In kernel 𝐹≤ bounded quantifiers can only be subtypes when
their bound types are identical (Cardelli and Wegner, 1985), which is stated in the rule S-
kernelall.

S-kernelall
Γ ⊢ A Γ, 𝛼 ≤ A ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A).B ≤ ∀(𝛼 ≤ A).C

S-equivall
Γ ⊢ A1 ≤ A2 Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≤ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A1).B ≤ ∀(𝛼 ≤ A2).C

In our paper, we will show how iso-recursive subtyping can be integrated with both kernel
and full variants of 𝐹≤ . However, for the kernel variant, differently from kernel 𝐹≤ , we
will generalize the rule S-kernelall to a rule S-equivall that accepts equivalent bounds
instead. The main motivation for using rule S-equivall is to enable more subtyping
involving records. While typically kernel 𝐹≤ is presented without records, in this paper we
include records in the calculus and we wish to consider types such as {𝑥 : nat, 𝑦 : nat} and
{𝑦 : nat, 𝑥 : nat}, to be equivalent (despite being syntactically different). Note that, while
in plain 𝐹≤ the subtyping relation is antisymmetric (Baldan et al., 1999) (i.e. if two types
are equivalent then they must be equal), the addition of records breaks antisymmetry since
there are equivalent types that are not equal. The rule S-equivall is more general than the
kernel rule with identical bounds, but retains decidability, as we shall see in §4.3.

Recursive Types. Recursive types 𝜇𝛼. 𝐴, can be traced back to Morris (1968). There
are two basic approaches to recursive types: equi-recursive types and iso-recursive types.
The essential difference between them is how they consider the relationship between a
recursive type 𝜇𝛼. 𝐴 and its unfolding [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴. In equi-recursive types, a recursive
type is equal to its unfolding. That is 𝜇𝛼. 𝐴 = [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴. In other words, recursive
types and their unfoldings are interchangeable in all contexts. Equi-recursive types also
allow for more general equalities than unfoldings. For example, the types 𝜇𝛼. int→ 𝛼 and



Journal of Functional Programming 7

𝜇𝛼. int→ int→ 𝛼 are considered equivalent in the equi-recursive setting, since they have
the same infinite unfolding (Amadio and Cardelli, 1993).

In iso-recursive types, a recursive type and its one-step unfolding are not equal but only
isomorphic. To convert between 𝜇𝛼. 𝐴 and [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 we need explicit unfold and
fold operators. A fold expression constructs a recursive type, while an unfold expression
opens a recursive type, as rule typing-fold and rule typing-unfold illustrate:

typing-unfold
Γ ⊢ e : 𝜇𝛼.A

Γ ⊢ unfold [𝜇𝛼.A] e : [𝛼 ↦→ 𝜇𝛼.A] A

typing-fold
Γ ⊢ e : [𝛼 ↦→ 𝜇𝛼.A] A Γ ⊢ 𝜇𝛼.A

Γ ⊢ fold [𝜇𝛼.A] e : 𝜇𝛼.A

Despite being less convenient, iso-recursive types are known to have the same expressive
power as equi-recursive types (Abadi and Fiore, 1996; Zhou et al., 2024). We will focus
next on iso-recursive types.

Recursive Subtyping. Subtyping between recursive types has been studied for many years
(Cardelli, 1985; Amadio and Cardelli, 1993; Ligatti et al., 2017). The most widely used
subtyping rules for recursive types are the Amber rules, first introduced in 1985 by Cardelli
(1985) in a manuscript describing the Amber language (Cardelli, 1985). The iso-recursive
Amber rules deal with recursive subtyping with three rules: rule S-amber, rule S-assmp
and rule S-refl.

S-amber
Γ, 𝛼 ≤ 𝛽 ⊢ A ≤ B

Γ ⊢ 𝜇𝛼.A ≤ 𝜇𝛽.B

S-assmp
𝛼 ≤ 𝛽 ∈ Γ

Γ ⊢ 𝛼 ≤ 𝛽

S-refl

Γ ⊢ A ≤ A

The Amber rules are simple, but their metatheory is troublesome. For example, transitivity
is hard to prove (Bengtson et al., 2011; Zhou et al., 2020, 2022). Furthermore, due to the
reliance on the reflexivity rule (rule S-refl), the Amber rules are problematic for subtyping
relations that are not antisymmetric (Ligatti et al., 2017). Recently, Zhou et al. (2020, 2022)
proposed a new specification for iso-recursive subtyping and some equivalent algorithmic
variants (Zhou and Oliveira, 2025). For this paper we use one of those algorithmic variants,
called the nominal unfolding rules (Zhou et al., 2022). The main reason to choose the
nominal unfolding rules is that they are easy to work with formally: indeed, Zhou et al.
(2022) have a full Coq development, including proofs of decidability, that we will reuse
and extend.

Nominal Unfolding Rules. The nominal unfolding rules provide a formal mechanism
for handling iso-recursive subtyping. These rules are designed to address the challenges
posed by contravariant occurrences of recursive type variables. For recursive types it is
expected that if two recursive types 𝜇𝛼. 𝐴 and 𝜇𝛼. 𝐵 are subtypes, then their unfolding
[𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 and [𝛼 ↦→ 𝜇𝛼. 𝐵] 𝐵 should also be subtypes. This property can be tricky to
achieve with contravariant occurrences of recursive variables. The Amber rules deal with
this issue by remembering pairs of recursive variables as subtyping assumptions, as can be
seen in rule S-amber. In contrast, the nominal unfolding rules unfold the recursive body
twice to ensure the correctness of the subtyping relation.
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For example, consider the subtyping statement 𝜇𝛼.𝛼→ nat ≤ 𝜇𝛼.𝛼→⊤. If we unfold
the recursive types twice, we obtain:

((𝜇𝛼.𝛼→ nat) → nat) → nat ≤ ((𝜇𝛼.𝛼→⊤) →⊤) →⊤

This statement requires both nat ≤ ⊤ (which is true) and ⊤ ≤ nat (which is false), thus
correctly rejecting the subtyping statement. Unfolding once would not expose the invalid
⊤ ≤ nat comparison.

The nominal unfolding rules simulate this double-unfolding process by replacing
recursive types with labeled types (𝐴𝛼):

S-nominal
Γ, 𝛼 ⊢ [𝛼 ↦→ A𝛼] A ≤ [𝛼 ↦→ B𝛼] B

Γ ⊢ 𝜇𝛼.A ≤ 𝜇𝛼.B

S-label
Γ ⊢ A ≤ B

Γ ⊢ A𝛼 ≤ B𝛼

In rule S-nominal, every time two recursive types are compared, a fresh label 𝛼 is used to
label to the unfolded parts. Labeled types can only be compared to other labeled types with
the same label, which ensures that they arise from the same recursive type, as shown in
rule S-label. The bound type variable 𝛼 in the recursive body becomes free variable after
unfolding1. For instance, to compare 𝜇𝛼.𝛼→ nat and 𝜇𝛼.𝛼→⊤, the subtyping statement
becomes:

(𝛼→ nat)𝛼 → nat ≤ (𝛼→⊤)𝛼 →⊤

The one-time unfolding is captured by the labels, since if we ignore the body of the labeled
types, 𝛼→ nat and 𝛼→⊤ are compared. On the other hand, when ignoring the labels,
the double unfolding statement is obtained, which exposes the invalid ⊤ ≤ nat comparison.
The key design in the nominal unfolding rules is to use label as a syntactic device to ensure
that recursive types are compared correctly. Without labels providing distinct identities to
recursive types, unsound subtyping statements such as 𝜇𝛼.nat→ 𝛼 ≤ 𝜇𝛼.nat→ nat→⊤,
which unfolds to nat→ nat→ 𝛼 ≤ nat→ nat→⊤, may be accepted.

The nominal unfolding rules are formally proven to be type sound and have the same
expressive power as the iso-recursive Amber rules (Zhou et al., 2022). They are also
easier to work with formally, enabling the development of sound and complete algorithmic
formulations of subtyping. Additionally, these rules are modular, allowing the extension of
existing calculi with iso-recursive types without significant changes to existing definitions
and proofs.

2.2 Applications of Bounded Quantification and Recursive Types

We now turn to applications of bounded quantification and recursive types. In particular the
classic application for both features is encodings of objects (Bruce et al., 1999). In addition,
we also show that the two features are useful to model encodings of algebraic datatypes
with subtyping.

1 In our Coq formalization we use a locally nameless representation (Aydemir et al., 2008), which distinguishes
free and bound variables naturally. With a locally nameless representation we can reuse the free variable name
𝛼 for the fresh label 𝛼. In the paper we use the named representation for better readability, so type variables
𝛼 and label variables 𝛼 are distinguished by color. In a black-and-white printout, these label variables can be
identified by noting that they only occur as superscripts in labeled types 𝐴𝛼.
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Object Encodings. A simple and well-known typed encoding of objects is the recursive
records encoding (Bruce et al., 1999; Canning et al., 1989; Cook et al., 1989). In this
encoding the idea is that object types are encoded as recursive record types, and objects are
encoded as records2. For example, we can define a type Point:

Point ≜ 𝜇 pnt.{x : Int, y : Int, move : Int→ Int→ pnt}

which consists of its coordinates and amove function. We use a recursive type becausemove
should return an updated point. To implement Point we define some auxiliary functions:
function getX(p : Point) = (unfold [Point] p ). x
function getY(p : Point) = (unfold [Point] p ). y
function moveTo(p : Point , x : Int , y : Int ) = (unfold [Point] p ).move x y

then a constructor mkPoint can be defined as:
function mkPoint(x1 : Int , y1 : Int ) = fold [Point] {
x=x1,
y=y1,
move = 𝜆x2 y2. mkPoint(x2, y2)

}
Note that the auxiliary functions above would not be needed in a source language, since a
source language would treat p.x as syntactic sugar for (unfold [Point] p).x. Similarly, the
source language would automatically insert a fold in the object constructor. In other words,
in a source language with iso-recursive subtyping, the fold’s and unfold’s do not need to be
explicitly written and are automatically inserted by the compiler. For instance, this is what
Abadi et al. (1996)’s translation of a language with objects into an iso-recursive extension
of 𝐹≤ does.

With subtyping, we can develop subtypes of Point, such as:

ColorPoint ≜ 𝜇 pnt.{x : Int, y : Int, move : Int→ Int→ pnt, color : String}
EqPoint ≜ 𝜇 pnt.{x : Int, y : Int, move : Int→ Int→ pnt, eq : pnt→ Bool}

Now, suppose we wish to translate the coordinates by one unit for a point, but we do not
want to write such a translation function for each subclass of Point. As a first attempt, this
is achieved with a polymorphic function:
function translate [P ≤ Point] (p : P) =
(unfold [Point] p ).move (getX p + 1) (getY p + 1)

The type of this translate function is ∀(P ≤ Point). P→Point, which is obtained from the
following typing derivation (some parts omitted):

P ≤ Point, p : P ⊢ p : P P ≤ Point, p : P ⊢ P ≤ Point
typing-sub

P ≤ Point, p : P ⊢ p : Point
typing-unfold

P ≤ Point, p : P ⊢ (unfold [Point] p) :
{
x : Int, y : Int,
move : Int→ Int→ Point

}
. . .

⊢ translate :∀(P ≤ Point).P→ Point

2 We will use a simplified form of the encoding that does not deal with self-references, which allows programmers
to refer to the object itself in method implementations using the self parameter. But self-references could be
dealt with in standard ways (Canning et al., 1989).
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However, this type is unsatisfying because it loses precision: it returns a Point instead of
a P. The type that we want instead is:

∀(P ≤ Point).P→ P

Unfortunately, we cannot obtain this more general type with only bounded quantification and
the usual unfolding rule typing-unfold. In the rule typing-unfold, the unfold annotation
must be a recursive type. However, if we wish to return P, then we should use unfold with
the annotation P, which is not a recursive type, but a type variable.

Some advanced techniques, such as F-bounded quantification (Canning et al., 1989;
Baldan et al., 1999), address this issue. In F-bounded quantification, the bounded variables
are allowed to appear in the bound, and universal types take the form ∀(𝛼 ≤ 𝐹 [𝛼]). 𝐵,
where 𝐹 is a type-level function applied to the bound variable 𝛼. For the example above,
the bound in the translate function is no longer the closed recursive type Point but would
have the form 𝐹 [𝛼] = {𝑥 : Int, 𝑦 : Int, move : Int→ Int→ 𝛼}. Therefore, with F-bounded
quantification the translate function could have the type:

∀(𝛼 ≤ {𝑥 : Int, 𝑦 : Int, move : Int→ Int→ 𝛼}). 𝛼→ 𝛼

Then the 𝛼 can be instantiated to Point or subtypes of Point, since Point ≤ 𝐹 [Point].
Note that to satisfy the F-bounded constraints 𝛼 ≤ 𝐹 [𝛼], the subtyping statements must
be interpreted in an equi-recursive setting. 𝐹𝜇

≤ uses a less intrusive approach to achieve
the same effect for typing the translate function, without requiring recursive bounds or
equi-recursive types. This is achieved by using the structural unfolding rule (Abadi et al.,
1996), which we will discuss in §2.3.

Encoding positive F-bounded quantification. Fortunately, with the structural rules, we
can use a type variable as an annotation for unfold. This enables us to encode forms of
F-bounded quantification with positive occurrences of recursive variables, which is the case
for Point. We can change the unfold annotation in translate from the recursive type Point
to its subtype, the type variable P:
function translate [P ≤ Point] (p : P) =
(unfold [P] p ).move (getX p + 1) (getY p + 1)

In §2.3, we will discuss the typing of this program via the structural unfolding rule in detail.
After this change the type of translate is ∀(P ≤ Point).P→ P. Then we can apply translate
to Point or any of its subtypes, without losing static precision. Thus, if we call translate
[EqPoint] (mkEqPoint 0 0), then we obtain an EqPoint object at (1, 1). Here mkEqPoint is
a constructor for objects with type EqPoint, which contain a binary method (Bruce et al.,
1995) eq:
function mkEqPoint(x1 : Int , y1 : Int ) = fold [EqPoint] {
x = x1,
y = y1,
move = 𝜆x2 y2. mkEqPoint(x2, y2),
eq = 𝜆p. (getX p == x1) ∧ (getY p == y1)

}
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Encoding objects with bounded existentials. Recursive types are not the only way to
encode objects. Another common encoding is to use bounded existentials (Cardelli and
Wegner, 1985). Existential types can be used to encode objects (Pierce and Turner, 1994),
or they can be employed together with recursive types (Bruce, 1994). Since the intentional
behavior of existential types can be encoded by universal types, we can obtain a form of
bounded existentials for free in 𝐹≤ (Cardelli and Wegner, 1985):

∃(𝛼 ≤ 𝐴).𝐵 ≜ ∀(𝛽 ≤ ⊤). (∀(𝛼 ≤ 𝐴). 𝐵→ 𝛽→ 𝛽)
pack [𝐶, 𝑒] as (∃(𝛼 ≤ 𝐴).𝐵) ≜ Λ(𝛽 ≤ ⊤). 𝜆( 𝑓 :∀(𝛼 ≤ 𝐴). 𝛼→ 𝛽). 𝑓 𝐶 𝑒

unpack 𝑒1 as [𝛼, 𝑥] in 𝑒2 ≜ 𝑒1 𝐶 (Λ(𝛼 ≤ 𝐴). 𝜆(𝑥 : 𝐵).𝑒2)
where 𝑒1 : ∃(𝛼 ≤ 𝐴).𝐵 and 𝑒2 :𝐶

(2.1)

Abadi et al. (1996) presented an encoding of objects using a combination of recursive
types and bounded existential quantification, called the ORBE encoding. In their work, an
interface 𝐼 (𝛼) is defined as a record of type-level functions, each having a self variable 𝛼

argument ({𝑙𝑖 : 𝐼𝑖 (𝛼)𝑖∈1...𝑛}). For example, the interface for the Point object is:

𝐼Point (𝛼) ≜ {x : Int, y : Int,move : Int→ Int→ 𝛼}

The general ORBE encoding for an interface 𝐼 (𝛼) is:

ORBE(𝐼) ≜ 𝜇𝛼. ∃(𝛽 ≤ 𝛼).


self : 𝛽,
lsel𝑖 : 𝛽→ 𝐼𝑖 (𝛽)

𝑖∈1,...,𝑛
,

lupd
𝑖

: (𝛽→ 𝐼𝑖 (𝛽)) → 𝛽
𝑖∈1,...,𝑛


The bounded existential quantification (∃(𝛽 ≤ 𝛼)) is used to indicate that the true type of an
object can be a subtype of the object type 𝛼. Intuitively, it allows the object implementation
to contain more fields, such as private variables, than the interface specifies. The field self
is the object itself with all its methods including private ones so that the listed methods
can access the object’s private fields. Through fields 𝑙sel

𝑖
, users of the object can access

the object’s public methods. The fields 𝑙upd
𝑖

are optional in the encoding. They allow users
to update method 𝑙𝑖 by taking a new function of self and returning a new object with the
updated method, which is a feature not supported in many other object encodings. For
example, the Point object from above can be encoded with the ORBE encoding as follows:

PointORBE ≜ 𝜇 pnt. ∃(𝛽 ≤ pnt).


self : 𝛽,
xsel : 𝛽→ Int, xupd : (𝛽→ Int) → 𝛽,

ysel : 𝛽→ Int, yupd : (𝛽→ Int) → 𝛽,

movesel : 𝛽→ Int→ Int→ 𝛽,

moveupd : (𝛽→ Int→ Int→ 𝛽) → 𝛽


We can implement the Point object with the ORBE encoding as follows:
function mkPointORBE(x1: Int, y1: Int) = fold [PointORBE] (
pack [PointORBE, {

self = mkPointORBE(x1, y1),
xsel = 𝜆 (self ': PointORBE). x1,
ysel = 𝜆 (self': PointORBE). y1,
movesel = 𝜆 (self': PointORBE) x2 y2. mkPointORBE(x1 + x2, y1 + y2),
. . . }] as ∃(𝛽 ≤ PointORBE). {. . .})
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Method calls are encoded by unfoldings of iso-recursive types and unpacking of bounded
existentials. For example, accessing the x field of a Point object can be implemented as:
function getXORBE(p: PointORBE) =
(unpack (unfold [PointORBE] p) as [𝛼, o] in o.xsel(o.self) )

We omit the encodings for the method update fields in the mkPointORBE function for
brevity, but they can also be written using 𝐹

𝜇
≤ . More details about the encoding can be

found in the original work (Abadi et al., 1996). As we can see, the ORBE encoding requires
both recursive types and bounded existentials. By rewriting all bounded existentials into
universal quantification using (2.1), we are able to write all the programs and types in the
ORBE encoding presented above in our 𝐹𝜇

≤ calculus. Therefore, 𝐹𝜇
≤ can serve as a target

language for the ORBE encoding.
When it comes to subtyping, as Bruce et al. (1999) observe, the ORBE encoding requires

full 𝐹≤ for the bounded quantification subtyping rule. Consider the encoding for the object
ColorPoint, which has more fields than Point. ColorPointORBE should extend the record in
PointORBE with colorsel and colorupd fields. When we try to compare the two encodings, we
see that the bounds in (𝛽 ≤ pnt) for the two types are not the same – the recursive variable
pnt in ColorPointORBE stands for more fields than in PointORBE . As a result, contravariant
subtyping is needed for comparing the bound in the existential type, which in turn requires
full 𝐹≤ instead of kernel 𝐹≤ . Therefore, we also study the full 𝐹𝜇

≤ calculus in this paper, in
order to support subtyping between objects in the ORBE encoding.

Encodings of Algebraic Datatypes with Subtyping. It is well-known that, in the polymor-
phic lambda calculus (System F) (Reynolds, 1974), we can use Church (1932) encodings
to encode algebraic datatypes (Böhm and Berarducci, 1985). However, Church encodings
make it hard to encode some operations, or worse they prevent encoding certain operations
with the correct time complexity. A well-known example (Church, 1932) is the encoding
of the predecessor function on natural numbers, which is linear with Church encodings
instead of being constant time.

An alternative encoding that captures intentional behavior of datatypes in the untyped
lambda calculus and avoids the issues of Church encodings, is due to Scott (1962).
Unfortunately, Scott encodings cannot be encoded in plain System F. The addition of
recursive types to a polymorphic lambda calculus allows a typed Scott encoding (Parigot,
1992). Moreover, in the presence of subtyping, we can also encode algebraic datatypes with
subtyping, enabling certain forms of reuse that are not possible without subtyping. Oliveira
(2009) has shown this assuming a 𝐹≤-like language with recursive types and records, but he
has not formalized such a language. Here we revisit Oliveira’s example. A similar encoding
for datatypes can be achieved in 𝐹

𝜇
≤ . For example, one may define a datatype Exp1 for

mathematical expressions, with constant, addition, and subtraction constructors:
data Exp1 = Num Int | Add Exp1 Exp1 | Sub Exp1 Exp1

The encoding in 𝐹
𝜇
≤ of this datatype can be defined as follows:

Exp1 ≜ 𝜇E. ∀A. {num : Int→ A, add : E→ E→ A, sub : E→ E→ A} → A

If we unfold the recursive type, this encoding is a polymorphic higher order function that
takes a record with three fields (num, add and sub) as input. Each field corresponds to a
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constructor in the datatype definition. This encoding is particularly useful for case analysis,
since the polymorphic function essentially encodes case analysis directly. To write a function
that performs case analysis on this datatype, one can unfold the recursive type, instantiate
A with the result type, and then provide a record that maps each case to an implementation
function that takes the constructor components as input and returns a result of type A. For
example, given an expression e with type Exp1, a case analysis-based evaluation function
can be written as:
function eval (e : Exp1) = (unfold [Exp1] e) [ Int ] {
num = 𝜆n. n,
add = 𝜆e1 e2. (eval e1 + eval e2),
sub = 𝜆e1 e2. (eval e1 − eval e2)

}
where we use [. . .] to represent type instantiation. Here Exp1 is instantiated with the
evaluation result type Int. A record of three functions is supplied to implement case
analysis. The num field implements a function that returns the integer n of the Num
constructor directly, while the functions in add and sub fields perform the evaluation
process recursively. To construct concrete instances of the datatype, each constructor also
comes with a corresponding encoding in the calculus:
function Num1 (n: Int) = fold [Exp1] (Λ A. 𝜆 e. (e.num n))
function Add1 (e1 : Exp1, e2 : Exp1) = fold [Exp1] (Λ A. 𝜆 e. (e.add e1 e2))
function Sub1 (e1 : Exp1, e2 : Exp1) = fold [Exp1] (Λ A. 𝜆 e. (e.sub e1 e2))

One can easily check, using rule typing-fold, that the result type of each constructor
encoding becomes Exp1 after a recursive type folding. Therefore, in this encoding, the use
of constructors and case analysis functions is natural: one can construct the expression 1 + 2
directly with the encoded constructors as Add1 (Num1 1) (Num1 2), and get its evaluation
result by calling eval (Add1 (Num1 1) (Num1 2)).

Subtyping between datatypes. Now consider a larger datatype Exp2, which extends the
Exp1 datatype with a new constructor Neg, for denoting negative numbers.
data Exp2 = Num Int | Add Exp2 Exp2 | Sub Exp2 Exp2 | Neg Exp2

This datatype is encoded in 𝐹
𝜇
≤ as:

Exp2 ≜ 𝜇E. ∀A. {num : Int→ A, add : E→ E→ A, sub : E→ E→ A, neg : E→ A} → A

The datatype Exp2 differs from Exp1 only in the new constructor: the other constructors
are just the same. To reduce code duplication, it is desired that the constructor functions
such as Add1 can be polymorphic and used for both datatypes. Note that Exp2 has more
constructors thanExp1, so it should be safe to coerceExp1 expressions intoExp2 expressions,
i.e. Exp1 ≤ Exp2. Therefore, we would like the 𝐹

𝜇
≤ encoding for the Add constructor to have

the following type, so that both encodings of Exp1 and Exp2 can use this constructor
function:

Add∀ :∀(E ≥ Exp1). E→ E→ E

There are two problems here. Firstly, similarly to the issue that we have faced in the translate
function, we would like to use a type variable in the fold’s of the constructors. This way
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we can make the constructors polymorphic. Secondly, as evidenced by the desired type
for Add, we need lower bounded quantification, but in 𝐹

𝜇
≤ (and 𝐹≤) we only have upper

bounded quantification.

Polymorphic constructors with lower bounded quantification. For applications such as
encodings of algebraic datatypes, the dual form of bounded quantification (lower bounded
quantification) seems to be more useful. Thus we have an extended system, called 𝐹

𝜇∧
≤≥ , that

also supports lower bounded quantification. Polymorphic datatype constructors become
typeable with the structural folding rule. For example, we can encode the polymorphic Add
constructor as:
function Add∀ [E ≥ Exp1] (e1 : E, e2 : E) = fold [E] (Λ A. 𝜆 e. (e .add e1 e2))

Other polymorphic constructors such asNum∀ and Sub∀ can be encoded similarly, enabling
more useful programming patterns. For example, if we want to implement a compiler that
uses Exp1 as its core language, but also want to support richer datatype constructors in a
source language like Exp2 does, we would like to be able to reduce code duplication across
the two similar languages. For instance, if we define a pretty printer function for Exp2
function print (𝑒: Exp2) = (unfold [Exp2] 𝑒) [string] {
num = 𝜆 n. ( int to string n ),
add = 𝜆 e1 e2. ((print e1) ++ ”+” ++ ( print e2 )),
sub = 𝜆 e1 e2. ((print e1) ++ ”−” ++ ( print e2 )),
neg = 𝜆 e. ( ”−” ++ ( print e ))

}
we can use this function to print Exp1 expressions as well: all the constructors in Exp1 are
also in Exp2 and have their pretty printing methods defined in the above function.

Suppose also that we wish to implement a simple desugaring function that transforms
Exp2 into Exp1, by transforming negative numbers −𝑛 into subtractions 0 − 𝑛. This function
should do case analysis on Exp2 and use only the constructors in Exp1 to produce the result,
i.e. it should have a type Exp2 → Exp1. The following code, with polymorphic constructors,
has the desired typing:
function desugar (𝑒: Exp2) = (unfold [Exp2] 𝑒) [Exp1] {
num = 𝜆 n. Num∀ [Exp1] n,
add = 𝜆 e1 e2. Add∀ [Exp1] (desugar e1) (desugar e2),
sub = 𝜆 e1 e2. Sub∀ [Exp1] (desugar e1) (desugar e2),
neg = 𝜆 e. Sub∀ [Exp1] (Num∀ [Exp1] 0) (desugar e)

}
In contrast, in many practical programming languages this task either involves code dupli-
cation or loss of type precision. In a typical functional language, we can define both Exp1
and Exp2 and also obtain precise static typing guarantees for the desugar function. But this
comes at the cost of duplication, since the constructors for the two datatypes are different,
and many operations, such as pretty printing, need to be essentially duplicated. In 𝐹

𝜇∧
≤≥ , in

addition to polymorphic constructors, we would just need to define the pretty printer for
Exp2, and that function would also work for Exp1. Alternatively, in a typical functional lan-
guage one could define only Exp2 and type desugar with the imprecise type Exp2 → Exp2,
which does not statically guarantee that theNeg constructor has been removed. This solution
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avoids the duplication at the cost of static typing guarantees. In 𝐹
𝜇∧
≤≥ we do not need such

compromises: we can avoid code duplication and preserve the static typing guarantees.

2.3 Key Ideas and Results

As Table 1 shows, no previous calculi with bounded quantification and recursive types
are fully satisfactory in all dimensions. In particular, equi-recursive types are problematic,
since they can change the expressive power of the subtyping relation in unexpected ways.
More importantly, adding equi-recursive subtyping to 𝐹≤ requires novel algorithms, and
the extension is non-modular, requiring several changes to existing definitions and proofs.

Kernel 𝐹≤ with iso-recursive types. Our type system directly combines kernel 𝐹≤ and the
nominal unfolding rules together. The addition of the nominal unfolding rules has almost
no effect on the original proofs in kernel 𝐹≤ . That is, the proofs for important lemmas,
such as transitivity, are nearly the same as those in kernel 𝐹≤ , except that we need a new
case to deal with recursive types. Thus, proofs that have been very hard in the past, such as
transitivity, are very simple in 𝐹

𝜇
≤ .

The more challenging aspect in the metatheory of 𝐹𝜇
≤ lies in the unfolding lemma:

Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵 ⇒ Γ ⊢ [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼. 𝐵] 𝐵

which reveals an important property for iso-recursive types: if two iso-recursive types are
subtypes, then their one-step unfoldings are also subtypes. To prove the unfolding lemma,
a generalized lemma is needed (Zhou et al., 2022). In 𝐹

𝜇
≤ , we show that the previous

generalized approach is insufficient, due to bounded quantification. Therefore, an even
more general lemma is proposed.

Another challenge is decidability. Although both kernel 𝐹≤ and the nominal unfolding
rules (for simple calculi) have been independently proved decidable, their decidability
proofs use very different measures. A natural combination is problematic, thus we need a
new approach.

After overcoming those challenges, we show that kernel 𝐹
𝜇
≤ is transitive, decidable,

conservative and modular. Furthermore, there is a simple, sound and complete algorithmic
type system to enable implementations and to provide important help in the proofs of results
such as conservativity of typing.

Full 𝐹≤ with iso-recursive types. We have also integrated full 𝐹≤ with iso-recursive
subtyping. The most significant challenge compared to the kernel variant is proving the
unfolding lemma. As we will discuss in §4.3, the method used to prove the generalized
unfolding lemma for the kernel variant does not apply to the full variant due to the con-
travariance of the bounds. Therefore, a yet more sophisticated adaptation of the generalized
unfolding lemma is required. Additionally, we establish several other properties for full 𝐹𝜇

≤ ,
such as type soundness, conservativity, and undecidability.
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Structural folding and unfolding rules. In our work, instead of standard rules for
fold/unfold expressions, we use structural rules:

typing-sunfold
Γ ⊢ e : A Γ ⊢ A ≤ 𝜇𝛼.B

Γ ⊢ unfold [A] e : [𝛼 ↦→ A] B

typing-sfold
Γ ⊢ e : [𝛼 ↦→ B] A Γ ⊢ 𝜇𝛼.A ≤ B

Γ ⊢ fold [B] e : B

The key point about the structural rules is that the annotations are generalized to be a
subtype/supertype of a recursive type, instead of exactly a recursive type. In particular,
this generalization enables annotating fold/unfold with a bounded type variable. This is
forbidden in the traditional rules. In the rule typing-sunfold, it is worthwhile to mention
that when we have 𝐴 ≤ 𝜇𝛼. 𝐵 where 𝛼 appears negatively in 𝐵, then there are very lim-
ited choices to what 𝐴 can be. Essentially it can be 𝜇𝛼. 𝐵 itself and little else. In other
words, negative recursive types have very restricted subtyping, which is why the structural
unfolding rule can be type safe. Note also that, since the structural unfolding rules provide
almost no flexibility for negative recursive subtyping, they are insufficient to fully express
F-bounded quantification for negative recursive types.

The structural unfolding rule was presented by Abadi et al. (1996) for supporting struc-
tural update in the object calculus that was being encoded into 𝐹≤ with iso-recursive types.
In their work, the structural unfolding rule is presented with an informal explanation. We
provide structural rules for both unfold and fold expressions, together with the formalization
of the type soundness for both rules. With the structural unfolding rule we can, for instance,
obtain the desired typing for the translate function.

P ≤ Point, p : P ⊢ p : P P ≤ Point, p : P ⊢ P ≤ Point
typing-sunfold

P ≤ Point, p : P ⊢ (unfold [P] p) :
{
x : Int, y : Int,
move : Int→ Int→ P

}
. . .

⊢ translate :∀(P ≤ Point). P→ P

Readers can compare this derivation to the one in §2.2, where the conventional unfolding
rule and the subsumption rule are used instead. The use of rule typing-sunfold enables
us to give a more precise type for the translate function.

Lower bounded quantification and𝐹
𝜇∧
≤≥ . We have also formalized an extension of𝐹𝜇

≤ with
both upper and lower bounded quantification, called𝐹𝜇∧

≤≥ . All the same results that are proved
for 𝐹𝜇

≤ are also proved for 𝐹𝜇∧
≤≥ , including transitivity, decidability and type soundness. The

structural folding rules become more useful in 𝐹
𝜇∧
≤≥ . With lower bounded quantification

and the structural folding rules we can get the correct typing for the polymorphic Add
constructor:

· · ·

E ≥ Exp1,

e1 : E, e2 : E ⊢ΛA. 𝜆e.(e.add e1 e2) :∀A.


num : Int→ A,
add : E→ E→ A,
sub : E→ E→ A

→ A

typing-sfold
E ≥ Exp1, e1 : E, e2 : E ⊢ fold [E] (ΛA. 𝜆e. (e.add e1 e2)) : E

. . .
⊢ Add∀ :∀(E ≥ Exp1). E→ E→ E

Records as intersection types. It is well known that multi-field records can be encoded
using intersection types and single field records (Reynolds, 1988; Dunfield, 2012). In 𝐹

𝜇∧
≤≥
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we follow this alternative approach to type record expressions. The record type {x : nat, y :
nat} in 𝐹

𝜇
≤ is now simply syntactic sugar in 𝐹

𝜇∧
≤≥ for the intersection type {x : nat}&{y : nat}.

To avoid records with duplicate labels being intersected, we restrict the labels in the
intersection types to be disjoint. For instance, {𝑥 : nat} & {𝑥 : nat→ nat} is not a valid type
in 𝐹

𝜇∧
≤≥ . We will further discuss such design choice in §5. The combination of unrestricted

intersection types and iso-recursive subtyping was studied in Zhou et al. (2022). Our work
models a restricted form of intersection types. In 𝐹

𝜇∧
≤≥ , only types that are formed by

intersecting single-field record types are considered, and the disjointness relation discussed
in Zhou et al. (2022) is in turn simplified to a compatibility relation for checking well-
formedness of intersection types. The intersection type operator & is commutative and
associative in terms of type equivalence, so that record permutations are obtained for free.

The typing rules for record expressions and projections in 𝐹
𝜇∧
≤≥ are shown below:

typing-srcd
𝑙𝑖

𝑖∈1· · ·𝑛 are disjoint Γ ⊢ 𝑒𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢ {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙1 : A1} & . . . & {𝑙𝑛 : A𝑛}

typing-sproj
Γ ⊢ e : {𝑙 : A}
Γ ⊢ e.𝑙 : A

With intersection types, record expressions are now typed using rule typing-srcd. As a
result, we no longer need a dedicated rule for subtyping multi-field record types, which has
a complicated definition since it needs to decide the subset inclusion of record fields and
check the subtyping relation for common fields. Instead, we can now rely on the subtyping
relation for intersection types and a direct subtyping rule for subtyping types in single-
field records. Moreover, record projections can be defined in terms of subtyping now, as
rule typing-sproj shows. When projecting a field from a record expression 𝑒, we can simply
check if the record type of 𝑒 is a subtype of the expected record type.

The treatment of records in 𝐹
𝜇∧
≤≥ aligns closely with the way Dependent Object Calculus

(DOT) (Rompf and Amin, 2016) deals with object types. Rule typing-dot-object shows
the typing rule for object expressions in DOT. In DOT object expressions are a record
with a self reference variable 𝑥 bounded to the object itself, containing a list of labeled
declarations 𝑑1 . . . 𝑑𝑛. When type checking objects, each declaration is checked on its own,
and the intersection of all the declaration types forms the type of the object.

typing-dot-object
𝑑𝑖

𝑖∈1· · ·𝑛 have disjoint labels Γ, 𝑥 : A𝑖 ⊢ 𝑑𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢ {𝑥⇒ 𝑑1 . . . 𝑑𝑛} : {𝑥⇒ A1 & . . . & A𝑛}

𝐹
𝜇∧
≤≥ and DOT share the same idea of using intersection types to type record expressions

or objects and both require the labels to be disjoint. Due to the use of path-dependent
types (Amin et al., 2014) in DOT, the treatment of recursive types is different. In 𝐹

𝜇∧
≤≥ we

do not have a self reference variable in record expressions or types, and 𝐹
𝜇∧
≤≥ lacks of some

DOT features. On the other hand 𝐹
𝜇∧
≤≥ has key properties, such as decidability, transitivity

of subtyping, and being a conservative extension of 𝐹≤ , which are partly missing in DOT.
Despite these differences, we hope that 𝐹𝜇∧

≤≥ can provide insights into the design of DOT-
like calculi with bounded quantification and recursive types and complement the existing
work in terms of the design space.
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Types 𝐴, 𝐵, . . . F nat | ⊤ | 𝐴1 → 𝐴2 | 𝛼 | 𝜇𝛼. 𝐴 | 𝐴𝛼

| ∀(𝛼 ≤ 𝐴). 𝐵 | {𝑙𝑖 : 𝐴𝑖
𝑖∈1· · ·𝑛}

Expressions 𝑒 F 𝑥 | i | 𝑒1 𝑒2 | 𝜆𝑥 : 𝐴. 𝑒 | 𝑒 𝐴 | Λ(𝛼 ≤ 𝐴). 𝑒
| unfold [𝐴] 𝑒 | fold [𝐴] 𝑒 | {𝑙𝑖 = 𝑒𝑖

𝑖∈1· · ·𝑛} | 𝑒.𝑙
Values 𝑣 F i | 𝜆𝑥 : 𝐴. 𝑒 | fold [𝐴] 𝑣 | Λ(𝛼 ≤ 𝐴). 𝑒 | {𝑙𝑖 = 𝑣𝑖

𝑖∈1· · ·𝑛}
Contexts Γ F · | Γ, 𝛼 ≤ 𝐴 | Γ, 𝑥 : 𝐴

Fig. 1: Syntax of 𝐹𝜇
≤ .

3 Bounded Quantification with Iso-Recursive Types

This section introduces a new calculus, called 𝐹
𝜇
≤ , integrating bounded quantification,

record types and recursive types. We show two variants of 𝐹
𝜇
≤ . One is kernel 𝐹

𝜇
≤ , by

adopting the kernel rule for subtyping bounded quantification from kernel 𝐹≤ (Cardelli and
Wegner, 1985). The other one is full 𝐹𝜇

≤ , which instead adopts the full rule for subtyping
bounded quantification from full 𝐹≤ (Curien and Ghelli, 1992; Cardelli et al., 1994).

3.1 Kernel 𝐹≤ with Iso-recursive Subtyping

Firstly, we introduce how to combine kernel bounded quantification, multi-field records
and iso-recursive subtyping in kernel 𝐹𝜇

≤ .

Syntax and Well-Formedness. The syntax of types and contexts for 𝐹
𝜇
≤ is shown in

Figure 1. Meta-variables 𝐴, 𝐵, 𝐶, 𝐷 range over types. Types consist of natural numbers
(nat), the top type (⊤), function types (𝐴→ 𝐵), type variables (𝛼), recursive types (𝜇𝛼. 𝐴),
labeled types (𝐴𝛼), universal types (∀(𝛼 ≤ 𝐴). 𝐵), and record types ({𝑙𝑖 : 𝐴𝑖

𝑖∈1· · ·𝑛}).
Labeled types are types that are annotated with a label. They enable distinguishing between
otherwise structurally compatible types (equal types or subtypes). That is if the two types
being compared have different labels or one of the types is unlabeled, then the two types
will not be related, even when, ignoring the labels, they would be structurally compatible.
Expressions, denoted by the meta-variable 𝑒, include term variables (𝑥), natural numbers
(i), applications (𝑒1 𝑒2), abstractions (𝜆𝑥 : 𝐴. 𝑒), type applications (𝑒 𝐴), type abstractions
(Λ(𝛼 ≤ 𝐴). 𝑒), fold expressions (fold [𝐴] 𝑒), unfold expressions (unfold [𝐴] 𝑒), records
({𝑙𝑖 = 𝑒𝑖

𝑖∈1· · ·𝑛}), and record selection (𝑒.𝑙). Among them, natural numbers, abstractions
and type abstractions are values. Fold expressions and records can be values if their inner
expressions are also values. The context is used to store type variables with their bounds
and term variables with their types. Note that it is not necessary to distinguish recursive
variables and universal variables.

The definition of a well-formed environment ⊢ Γ is standard, ensuring that all variables
in the environment are distinct and all types in the environment are well-formed. A type
is well-formed if all of its free variables are in the context. The well-formedness rules for
types are shown at the top of Figure 2.

Subtyping for kernel 𝐹𝜇
≤ . The bottom of Figure 2 shows the subtyping judgement. Our

subtyping rules are mostly standard. The rules essentially include the rules of the algorithmic
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Γ ⊢ 𝐴 (Well-formed Type)

wft-nat

Γ ⊢ nat

wft-Top

Γ ⊢ ⊤

wft-var
𝛼 ≤ A ∈ Γ

Γ ⊢ 𝛼

wft-all
Γ ⊢ A Γ, 𝛼 ≤ A ⊢ B

Γ ⊢ ∀(𝛼 ≤ A).B

wft-arrow
Γ ⊢ A1 Γ ⊢ A2

Γ ⊢ A1 → A2

wft-rec
Γ, 𝛼 ≤ ⊤ ⊢ A

Γ ⊢ 𝜇𝛼.A

wft-label
Γ ⊢ A

Γ ⊢ A𝛼

wft-rcd
Γ ⊢ A𝑖 for each 𝑖

Γ ⊢ {𝑙𝑖 : A𝑖
𝑖∈1· · ·𝑛}

Γ ⊢ 𝐴 ≤ 𝐵 (Subtyping)
S-nat

⊢ Γ
Γ ⊢ nat ≤ nat

S-top
⊢ Γ Γ ⊢ A

Γ ⊢ A ≤ ⊤

S-var
⊢ Γ Γ ⊢ 𝛼
Γ ⊢ 𝛼 ≤ 𝛼

S-arrow
Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 → A2 ≤ B1 → B2

S-rec
Γ, 𝛼 ≤ ⊤ ⊢ [𝛼 ↦→ A𝛼] A ≤ [𝛼 ↦→ B𝛼] B

Γ ⊢ 𝜇𝛼.A ≤ 𝜇𝛼.B

S-vartrans
𝛼 ≤ B ∈ Γ Γ ⊢ B ≤ A

Γ ⊢ 𝛼 ≤ A

S-equivall
Γ ⊢ A1 ≤ A2 Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≤ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A1).B ≤ ∀(𝛼 ≤ A2).C

S-label
Γ ⊢ A ≤ B

Γ ⊢ A𝛼 ≤ B𝛼

S-rcd
⊢ Γ Γ ⊢ {𝑘 𝑗 : A 𝑗

𝑗∈1· · ·𝑚} {𝑙𝑖 𝑖∈1· · ·𝑛} ⊆ {𝑘 𝑗
𝑗∈1· · ·𝑚} 𝑘 𝑗 = 𝑙𝑖 implies Γ ⊢ A 𝑗 ≤ B𝑖

Γ ⊢ {𝑘 𝑗 : A 𝑗
𝑗∈1· · ·𝑚} ≤ {𝑙𝑖 : B𝑖

𝑖∈1· · ·𝑛}

Fig. 2: Well-formedness and subtyping rules for kernel 𝐹𝜇
≤ .

version of kernel 𝐹≤ (Cardelli and Wegner, 1985; Cardelli et al., 1994), but the rule for
bounded quantification is generalized. The rules S-var and S-vartrans are standard 𝐹≤
rules. Since we do not distinguish universal and recursive variables, those rules apply also
to recursive type variables. The rule for function types (rule S-arrow) is contravariant on
the input types and covariant on the output types. We have placed well-formedness checks
on all the base cases of the subtyping rules, which ensures that the context and types in a
subtyping relation are well-formed, as shown in Lemma 3.1. Note that for this regularity
property to hold, in rule S-rcd we requires the left record type to be well-formed but not
the right one, since the well-formedness of the right type can be derived from the subtyping
relation on record fields, while there might be extra fields in the left record type that are not
compared in the subtyping relation.

Lemma 3.1 (Regularity of subtyping). If Γ ⊢ 𝐴 ≤ 𝐵, then the following well-formedness
conditions hold: (1) ⊢ Γ, (2) Γ ⊢ 𝐴, and (3) Γ ⊢ 𝐵.
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Subtyping bounded quantification. The rule for bounded quantification is interesting,
stating that two universal types are subtypes if their bounds are equivalent (i.e. they are
subtypes of each other) and the bodies are subtypes. Rule S-equivall is more general than
rule S-kernelall since the latter requires the bounds to be equal. The reason to have the
more general rule using equivalent bounds is that, for records, we wish to accept subtyping
statements such as:

∀(𝛼 ≤ {𝑥 : nat, 𝑦 : nat}). 𝛼→ 𝛼 ≤ ∀(𝛼 ≤ {𝑦 : nat, 𝑥 : nat}). 𝛼→ 𝛼

where the bounds can be syntactically different, but equivalent, types. In the presence of
records or other features, such as intersection and union types (Pottinger, 1980; Coppo
et al., 1981; Barbanera et al., 1995), we can have such equivalent but not syntactically
equal types. Therefore, we should generalize the rule for bounded quantification to deal
with those cases. This generalization to equivalent bounds retains decidable subtyping just
as kernel 𝐹≤ as we shall see in §4.3.

Subtyping recursive types. For dealing with iso-recursive subtyping we employ the recent
nominal unfolding rules (Zhou et al., 2022), which have equivalent expressive power to
the well-known (iso-recursive) Amber rules (Cardelli, 1985). The nominal unfolding rules
have been discussed in §2.1. The reason to choose the nominal unfolding rules is that they
enable us to prove important metatheoretical results, such as transitivity, and develop an
algorithmic formulation of subtyping.

We extend the rule S-nominal to the rule S-rec in 𝐹
𝜇
≤ , by bounding recursive variables

with ⊤ when they are introduced into the context. Therefore, recursive variables are also
treated as universal variables, and we do not need to adjust the form of contexts in 𝐹≤ for
𝐹
𝜇
≤ . Apart from this, no other changes are necessary, making the addition of recursive types

mostly non-invasive. Consequently, the proofs of narrowing, reflexivity and transitivity are
the same as the original one for 𝐹≤ , except for the new cases dealing with recursive types
and minor adjustments to the rule of bounded quantification due to the generalization to
equivalent bounds. For those new cases, the proofs are all straightforward from the induction
hypothesis.

Lemma 3.2 (Narrowing). If Γ1 ⊢𝐶 ≤ 𝐶′ and Γ1, 𝛼 ≤ 𝐶′, Γ2 ⊢ 𝐴 ≤ 𝐵 then Γ1, 𝛼 ≤ 𝐶, Γ2 ⊢
𝐴 ≤ 𝐵.

Theorem 3.3 (Reflexivity). If ⊢ Γ and Γ ⊢ 𝐴 then Γ ⊢ 𝐴 ≤ 𝐴.

Theorem 3.4 (Transitivity). If Γ ⊢ 𝐴 ≤ 𝐵 and Γ ⊢ 𝐵 ≤ 𝐶 then Γ ⊢ 𝐴 ≤ 𝐶.

The unfolding lemma. Another important lemma is the unfolding lemma, which reveals
that, if two recursive types are subtypes, then their unfoldings are also subtypes. The
unfolding lemma is important for proving type preservation in a calculus with iso-recursive
subtyping. A key difficulty in the formalization of 𝐹

𝜇
≤ is proving the unfolding lemma

which, due to the presence of bounded quantification, requires a different proof technique
compared to the proofs by Zhou et al. (2022). We discuss the proof of the unfolding lemma
in §4.1.
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Lemma 3.5 (Unfolding Lemma). If Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵 then Γ ⊢ [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 ≤ [𝛼 ↦→
𝜇𝛼. 𝐵] 𝐵.

3.2 Full 𝐹≤ with Iso-recursive Subtyping

In full 𝐹𝜇
≤ , which incorporates full 𝐹≤ and iso-recursive types, the sole distinction from

the kernel variant of 𝐹
𝜇
≤ lies in permitting contravariant bounds, so we only present the

differences between the two variants.

Syntax and subtyping. The syntax of the full 𝐹𝜇
≤ is identical to that of the kernel 𝐹𝜇

≤
(§3.1). As for the subtyping rules, rule S-equivall is replaced by rule S-fullall in full
𝐹
𝜇
≤ .

S-equivall
Γ ⊢ A1 ≤ A2 Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≤ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A1).B ≤ ∀(𝛼 ≤ A2).C

S-fullall
Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≤ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≤ A1).B ≤ ∀(𝛼 ≤ A2).C

The only distinction between these two rules lies in the variance of the bounds: rule S-
fullall permits contravariance, allowing 𝐴2 to be a subtype of 𝐴1, whereas rule S-
equivall demands 𝐴2 to be equivalent to 𝐴1. The change to the subtyping rules in full 𝐹𝜇

≤
does not impact many subtyping lemmas, such as reflexivity (Theorem 3.3) and transitivity
(Theorem 3.4), which remain provable by reusing proof techniques from full 𝐹≤ . However,
as we shall see in §4.1, the unfolding lemma (Lemma 3.5) needs a different proof technique
due to the presence of contravariant bounds in full 𝐹

𝜇
≤ . In §4.1 we will present a new

generalized unfolding lemma that can be proved in both kernel and full 𝐹𝜇
≤ . With this new

lemma, we can prove the unfolding lemma (Lemma 3.5) for full 𝐹𝜇
≤ .

3.3 Typing, Reduction and Type Soundness

The two variants of the subtyping rules have no impact on proving type soundness.
Therefore, the typing and reduction rules remain consistent across both variants. Figure 3
shows the typing rules and reduction rules. Most rules are standard except for the typ-
ing rules for unfold and fold. For these two expressions we use structural rules instead
(rule typing-sunfold and rule typing-sfold), as explained in §2.3.

Structural unfolding lemma. Since the typing rules that we adopt for fold/unfold expres-
sions are the structural rules, which generalize the conventional rules, we need a more
general form for the unfolding lemma. The generalization of the lemma is necessary for the
type preservation proof with the structural folding/unfolding rules. We call the new lemma
the structural unfolding lemma:

Lemma 3.6 (Structural unfolding lemma). If Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷 ≤ 𝜇𝛼. 𝐵 then Γ ⊢
[𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵.

In this lemma, in the one-step unfolding the recursive types substituted in the bodies are,
respectively, a supertype and a subtype of 𝜇𝛼. 𝐴 and 𝜇𝛼. 𝐵. In contrast, in the unfolding
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Γ ⊢ 𝑒 : 𝐴 (Typing)
typing-nat

⊢ Γ
Γ ⊢ i : nat

typing-var
⊢ Γ 𝑥 : 𝐴 ∈ Γ

Γ ⊢ x : A

typing-sub
Γ ⊢ e : A Γ ⊢ A ≤ B

Γ ⊢ e : B

typing-abs
Γ, 𝑥 : A1 ⊢ e : A2

Γ ⊢ 𝜆x : A1. e : A1 → A2

typing-app
Γ ⊢ e1 : A1 → A2 Γ ⊢ e2 : A1

Γ ⊢ e1 e2 : A2

typing-tabs
Γ, 𝛼 ≤ A ⊢ e : B

Γ ⊢Λ(𝛼 ≤ A). e :∀(𝛼 ≤ A).B

typing-tapp
Γ ⊢ e :∀(𝛼 ≤ B1).B2 Γ ⊢ A ≤ B1

Γ ⊢ e A : [𝛼 ↦→ A] B2

typing-sfold
Γ ⊢ e : [𝛼 ↦→ B] A Γ ⊢ 𝜇𝛼.A ≤ B

Γ ⊢ fold [B] e : B

typing-sunfold
Γ ⊢ e : A Γ ⊢ A ≤ 𝜇𝛼.B

Γ ⊢ unfold [A] e : [𝛼 ↦→ A] B

typing-rcd
𝑙𝑖

𝑖∈1· · ·𝑛 are disjoint Γ ⊢ 𝑒𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢ {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙𝑖 : A𝑖
𝑖∈1· · ·𝑛}

typing-proj
Γ ⊢ e : {𝑙𝑖 : A𝑖

𝑖∈1· · ·𝑛}
Γ ⊢ e.𝑙𝑖 : A𝑖

𝑒1 ↩→ 𝑒2 (Reduction)

step-beta

(𝜆x : A. e1) v2 ↩→ [𝑥 ↦→ v2] e1

step-appl
e1 ↩→ e′1

e1 e2 ↩→ e′1 e2

step-appr
e2 ↩→ e′2

v1 e2 ↩→ v1 e′2

step-fld

unfold [A] (fold [B] v) ↩→ v

step-unfold
e ↩→ e′

unfold [A] e ↩→ unfold [A] e′

step-fold
e ↩→ e′

fold [A] e ↩→ fold [A] e′

step-tapp
e1 ↩→ e2

e1 A ↩→ e2 A

step-tabs

(Λ(𝛼 ≤ A). e) B ↩→ [𝛼 ↦→ B] e

step-proj
e ↩→ e′

e.𝑙 𝑗 ↩→ e′.𝑙 𝑗

step-projrcd

{𝑙𝑖 = v𝑖 𝑖∈1· · ·𝑛}.𝑙 𝑗 ↩→ v 𝑗

step-rcd
e 𝑗 ↩→ e′𝑗

{𝑙𝑖 = 𝑣𝑖
𝑖∈1· · · 𝑗−1, 𝑙 𝑗 = e 𝑗 , 𝑙𝑘 = 𝑒𝑘

𝑘∈ 𝑗+1· · ·𝑛} ↩→ {𝑙𝑖 = 𝑣𝑖
𝑖∈1· · · 𝑗−1, 𝑙 𝑗 = e′𝑗 , 𝑙𝑘 = 𝑒𝑘

𝑘∈ 𝑗+1· · ·𝑛}

Fig. 3: Typing and Reduction Rules.
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· ⊢ 𝑒 : [𝛼 ↦→𝐶′] 𝐴 · ⊢ 𝜇𝛼. 𝐴 ≤ 𝐶′
typing-sfold · ⊢ fold[𝐶′] 𝑒 :𝐶′ · ⊢𝐶′ ≤ 𝐷′

typing-sub · ⊢ fold[𝐶′] 𝑒 : 𝐷′ · ⊢ 𝐷′ ≤ 𝜇𝛼. 𝐵typing-sunfold · ⊢ unfold[𝐷′] (fold[𝐶′] 𝑒) : [𝛼 ↦→ 𝐷′] 𝐵

Fig. 4: Structural unfolding derivation.

lemma proposed by Zhou et al. (2022), the recursive types that get substituted in the bodies
are the same. As §4.1 and §5.3 will discuss, both forms of the unfolding lemma can be
proved using a more general lemma.

Type Soundness. To see how the structural unfolding lemma is used in the proof of type
preservation, let us consider the typing derivation of an expression unfold [𝐷′] (fold [𝐶′] 𝑒)
in Figure 4. Starting from a closed expression, both 𝐶′ and 𝐷′ must be recursive types,
thus we assume that 𝐶′ is 𝜇𝛼.𝐶 and 𝐷′ is 𝜇𝛼.𝐷. The type of unfold [𝐷′] (fold [𝐶′] 𝑒)
becomes [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵, and it should be a subtype of [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴, which is the type
of reduction result 𝑒.

The other parts of the type soundness proof are standard, thus we have:

Theorem 3.7 (Preservation). If ⊢ 𝑒 : 𝐴 and 𝑒 ↩→ 𝑒′ then ⊢ 𝑒′ : 𝐴.

Theorem 3.8 (Progress). If ⊢ 𝑒 : 𝐴 then 𝑒 is a value or 𝑒 ↩→ 𝑒′ for some 𝑒′.

3.4 Algorithmic Typing

The rules that we have presented in Figure 3 are declarative. The conclusion of the subsump-
tion rule overlaps with all other rules, making it non-trivial to derive an implementation
from the rules.

Figure 5 shows the algorithmic rules for typing. Compared with the declarative typing
rules, the subsumption rule (typing-sub) is removed. Also, the application (typing-app),
type application (typing-tapp), structural folding (typing-sfold), structural unfolding
(typing-sunfold) and record projection (typing-proj) rules are replaced by rules atyp-
app, atyp-tapp, atyp-sfold atyp-sunfold and atyp-proj, respectively. In the algorithmic
typing rules we take the standard approach of distributing subtyping checks in appropriate
places in the other rules, thus eliminating the need for the subsumption rule.

One interesting point is the two exposure relations ⇑ and ⇓ in 𝐹
𝜇
≤ . In 𝐹≤ , there is only

the upper exposure function (Γ ⊢ 𝐴 ⇑ 𝐵), which is used to find the least non-variable upper
bound for a variable in the context (Pierce, 2002). Consider the term

(Λ(𝛼 ≤ nat→ nat). 𝜆(𝑦 : 𝛼). 𝑦 5) :∀(𝛼 ≤ nat→ nat). 𝛼→ nat.

Without the upper exposure function in the rule atyp-tapp, the 𝑦 in the function body
would be typed as its minimal type 𝛼, which cannot be unified with a function type with
the argument type nat. The exposure function finds the smallest type that matches the
expected type, such as the function type for the argument 𝑦 in the example above. Thus
the upper exposure function plays an important role in finding the minimal type with the
algorithmic typing rules. To make our rules more general, we additionally define the lower
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Γ ⊢ 𝐴 ⇑ 𝐵 (Upper Exposure)

XA-promote
𝛼 ≤ A ∈ Γ Γ ⊢ A ⇑ B

Γ ⊢ 𝛼 ⇑ B

XA-up
A is not a type variable

Γ ⊢ A ⇑ A

Γ ⊢ 𝐴 ⇓ 𝐵 (Lower Exposure)

XA-top

Γ ⊢ ⊤ ⇓ 𝜇𝛼.⊤

XA-down
A is not a type variable or ⊤

Γ ⊢ A ⇓ A

Γ ⊢𝑎 𝑒 : 𝐴 (Algorithmic Typing)
atyp-nat

⊢ Γ
Γ ⊢a i : nat

atyp-var
⊢ Γ 𝑥 : 𝐴 ∈ Γ

Γ ⊢a x : A

atyp-abs
Γ, 𝑥 : A1 ⊢a e : A2

Γ ⊢a 𝜆x : A1. e : A1 → A2

atyp-app
Γ ⊢a e1 : A Γ ⊢ A ⇑ A1 → A2 Γ ⊢a e2 : B Γ ⊢ B ≤ A1

Γ ⊢a e1 e2 : A2

atyp-tabs
Γ, 𝛼 ≤ A ⊢a e : B

Γ ⊢a Λ(𝛼 ≤ A). e :∀(𝛼 ≤ A).B

atyp-tapp
Γ ⊢a e : B Γ ⊢ B ⇑ ∀(𝛼 ≤ B1).B2 Γ ⊢ A ≤ B1

Γ ⊢a e A : [𝛼 ↦→ A] B2

atyp-sfold
Γ ⊢a e : A Γ ⊢ C ⇓ 𝜇𝛼.B Γ ⊢ A ≤ [𝛼 ↦→ C] B Γ ⊢ C

Γ ⊢a fold [C] e : C

atyp-sunfold
Γ ⊢a e : A Γ ⊢ B ⇑ 𝜇𝛼.C Γ ⊢ A ≤ B

Γ ⊢a unfold [B] e : [𝛼 ↦→ B] C

atyp-rcd
𝑙𝑖

𝑖∈1· · ·𝑛 are disjoint Γ ⊢a 𝑒𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢a {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙𝑖 : A𝑖
𝑖∈1· · ·𝑛}

atyp-proj
Γ ⊢a e : A Γ ⊢ A ⇑ {𝑙𝑖 : A𝑖

𝑖∈1· · ·𝑛}
Γ ⊢a e.𝑙𝑖 : A𝑖

Fig. 5: Algorithmic Typing.
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exposure function (Γ ⊢ 𝐴 ⇓ 𝐵) to find the greatest non-variable subtype 𝐵 for 𝐴. For 𝐹𝜇
≤ ,

lower exposure only helps to find the correct shape for the recursive type body to be folded
in rule atyp-sfold by mapping ⊤ to 𝜇𝛼.⊤, so that it is valid to type check expressions
accepted by the structural rule typing-sfold like

(fold[⊤] 1) : 𝜇𝛼.⊤

with the algorithmic typing rules. The lower exposure function will be more useful when
we have lower bounded variables in the system, as we will see in §5.

The algorithmic rules are equivalent (sound and complete) with respect to the declarative
rules:

Theorem 3.9 (Soundness of the algorithmic rules). If Γ ⊢𝑎 𝑒 : 𝐴 then Γ ⊢ 𝑒 : 𝐴.

Theorem 3.10 (Completeness of the algorithmic rules). If Γ ⊢ 𝑒 : 𝐴 then there exists a 𝐵

such that Γ ⊢𝑎 𝑒 : 𝐵 and Γ ⊢ 𝐵 ≤ 𝐴.

Theorem 3.10 implies that our algorithm can always find a minimal type, which is an
important property for 𝐹𝜇

≤ .
It should be noted that there is no difference in terms of algorithmic typing rules for both

variants of 𝐹𝜇
≤ , though for full 𝐹𝜇

≤ , the algorithm might not terminate, since subtyping is
undecidable for full 𝐹𝜇

≤ .

4 Metatheory of 𝐹𝜇
≤

In this section we discuss the most interesting and difficult aspects of the metatheory of 𝐹𝜇
≤

in more detail. We cover three key properties: the unfolding lemma for 𝐹𝜇
≤ , the conservativity

of 𝐹𝜇
≤ over the original 𝐹≤ and (un)decidability of subtyping. The interaction between iso-

recursive types and bounded quantification requires significant changes in the proofs of the
unfolding lemma and decidability. In addition, we show how to prove the conservativity of
𝐹
𝜇
≤ over 𝐹≤ using the algorithmic formulation of 𝐹𝜇

≤ .

4.1 Unfolding Lemma

The unfolding lemma (Lemma 3.5) is a core lemma for the metatheory of a calculus with
iso-recursive subtyping. Though the statement of the unfolding lemma is quite simple and
intuitive to understand, the lemma cannot be proved directly. We will first review previous
approaches for proving the unfolding lemma, which do not account for bounded quantifi-
cation or only apply to kernel 𝐹𝜇

≤ . Then we show how to generalize the unfolding lemma
to address all the complications arising from the interaction of iso-recursive subtyping and
bounded quantification, including the case of full 𝐹𝜇

≤ .

The generalized unfolding lemma for iso-recursive subtyping. We first review the
unfolding lemma for the special case of iso-recursive subtyping without bounded quan-
tification. Because the premise of the unfolding lemma is restricted to a subtyping relation
between two recursive types 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵 instead of two generic types 𝐴 and 𝐵, a direct
induction on the premise is problematic, as it fails to provide a useful induction hypothesis
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for reasoning with nominal unfoldings like [𝛼 ↦→ 𝐴𝛼] 𝐴, where the type after substitution
may not be a recursive type. In Zhou et al. (2022)’s work the unfolding lemma is generalized
to the following form:

Lemma 4.1 (The generalized unfolding lemma in Zhou et al. (2022)). If Γ1, 𝛼, Γ2, ⊢ 𝐴 ≤ 𝐵

and Γ1 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷 then
1. Γ1, 𝛼, Γ2 ⊢ [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵 implies

Γ1, Γ2 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵;
2. Γ1, 𝛼, Γ2 ⊢ [𝛼 ↦→ 𝐷𝛼] 𝐴 ≤ [𝛼 ↦→𝐶𝛼] 𝐵 implies

Γ1, Γ2 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐵.

Due to the tricky interaction between rule S-var and rule S-arrow, in the generalized
unfolding lemma we need two mutually dependent lemmas: one for covariant cases (1)
and the other for contravariant cases (2). The proof for Lemma 4.1 proceeds by induction
on Γ1, 𝛼, Γ2, ⊢ 𝐴 ≤ 𝐵. In the inductive proof we need to switch between covariance and
contravariance. In particular, in the rule S-arrow case for functions, we need an induction
hypothesis that arises from conclusion (2) to prove the contravariant premise Γ ⊢ 𝐵1 ≤ 𝐴1
relating the input types of the function.

The generalized unfolding lemma for kernel 𝐹𝜇
≤ . When bounded quantification is taken

into account, Lemma 4.1 is unfortunately not general enough. The key difference is that now
the contexts are no longer just a list of type variables, but also associate a type bound with
each type variable. Moreover, the bounds are dependent on the type variables in the order
they appear, so that in the context Γ2, the bounds may contain the type variable 𝛼. Since
rule S-vartrans may look up a bound in the context Γ2, and compare it with the right-hand
side of the subtyping relation, to apply the induction hypothesis, the bound type in the
context should be equal to the substitution form [𝛼 ↦→?𝛼]𝑈 as in the subtyping relation. To
address this issue, Zhou et al. (2023) extends the unfolding lemma to the following form:

Lemma 4.2 (The generalized unfolding lemma for kernel 𝐹𝜇
≤ in Zhou et al. (2023)). If (1)

Γ1, 𝛼 ≤ ⊤, Γ2 ⊢ 𝐴 ≤ 𝐵, (2) Γ1 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼. 𝑆 and (3) Γ1 ⊢ 𝜇𝛼. 𝑆 ≤ 𝜇𝛼.𝐷 then
1. Γ1, 𝛼 ≤ ⊤, Γ2 [𝛼 ↦→ 𝑆𝛼] ⊢ [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵 implies

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵;
2. Γ1, 𝛼 ≤ ⊤, Γ2 [𝛼 ↦→ 𝑆𝛼] ⊢ [𝛼 ↦→ 𝐷𝛼] 𝐴 ≤ [𝛼 ↦→𝐶𝛼] 𝐵 implies

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐵.

We explain a few key points in the proof of Lemma 4.2 together with some proof sketches
below.

Firstly, the context Γ2 now comes with a substitution. Here, the syntax Γ[𝛼 ↦→ 𝑆] denotes
that all the occurrences of 𝛼 in context Γ will be replaced by a specified type 𝑆. With
substitutions in the context Γ2, in case S-vartrans and S-equivall, the premise from
inversion can have the same form as the original premise and thus the induction hypothesis
can be applied. For example, in case S-vartrans, assume that 𝐴 := 𝛽, 𝐵 := 𝐵, and Γ2
contains a bound 𝛽 ≤𝑈. We need to prove the following goal:

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵
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By analyzing the context we know that 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼. 𝑆] 𝑈 ∈ Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆], so we only
need to show

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→ 𝜇𝛼. 𝑆] 𝑈 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵.

This can be proved by instantiating the induction hypothesis with 𝐶 := 𝑆 and 𝐷 := 𝐷. In
this way, we overcome the issue with the substitutions in the context Γ2.

Secondly, note that the substituted type is neither 𝐶 nor 𝐷, but an intermediate type 𝑆

that lies between 𝐶 and 𝐷. This is to ensure that the induction hypothesis can be applied
to both the contravariant and covariant subgoals in case S-arrow. Otherwise, consider an
alternative lemma where 𝑆 is fixed to be 𝐷. In case S-arrow, assume that 𝐴 := 𝐴1 → 𝐴2
and 𝐵 := 𝐵1 → 𝐵2. We need to prove two subgoals:

1. Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼.𝐷] ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴2 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵2
2. Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼.𝐷] ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵1 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴1

If one follows the original proof steps in Lemma 4.1, the induction hypothesis has to be
instantiated with 𝐶 := 𝐷 and 𝐷 :=𝐶, so that the substitution matches with the two types in
the subtyping relation for the contravariant subgoal (2). In that case, the substituted type in
the context Γ2 becomes 𝜇𝛼.𝐶, which cannot be used to prove the subgoal (2). Therefore, in
Lemma 4.2 an intermediate type 𝑆 is introduced to decouple the substitution in the context
and in the subtyping relation for the function case. In other words, the invariant substitution
with type 𝜇𝛼. 𝑆 to the context makes the induction hypothesis applicable to both subgoals,
regardless of the substitution in the subtyping relation.

Finally, having the intermediate type 𝑆 will not affect the inductive proof for case S-
equivall in kernel 𝐹𝜇

≤ . We assume that 𝐴 :=∀(𝛽 ≤ 𝐴1). 𝐴2 and 𝐵 :=∀(𝛽 ≤ 𝐵1). 𝐵2. The
goal would look like:

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] ∀(𝛽 ≤ 𝐴1). 𝐴2 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] ∀(𝛽 ≤ 𝐵1). 𝐵2

After simplification and applying rule S-equivall, one of the goals becomes:

Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆], 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵1 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴2 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵2

To apply the induction hypothesis, we need to unify the new bound 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵1
and the existing context Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] into the same substitution form. In other words, we
need to show the following two environments are equivalent:

Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆], 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵1 ≡ (Γ2, 𝛽 ≤ 𝐵1) [𝛼 ↦→ 𝜇𝛼. 𝑆] (4.1)

This can be done by showing that 𝜇𝛼. 𝑆 is equivalent to 𝜇𝛼.𝐷. To prove this, we rely on
the fact that the bounds [𝛼 ↦→𝐶𝛼]𝐴1 and [𝛼 ↦→ 𝐷𝛼]𝐵1 are equivalent, and the following
inversion lemma on substitution:

Lemma 4.3 (Substitution inversion). If 𝐴 is equivalent to 𝐵, and [𝛼 ↦→𝐶𝛼] 𝐴 is equivalent
to [𝛼 ↦→ 𝐷𝛼] 𝐵, then either 𝐶 is equivalent to 𝐷 or 𝛼 is not in 𝐴 nor 𝐵.

For the first case we get from Lemma 4.3, by the fact that 𝑆 lies in the middle of 𝐶 and
𝐷, we can show that all the three types 𝜇𝛼.𝐶,𝜇𝛼. 𝑆 and 𝜇𝛼.𝐷 are equivalent. For the
second case, since 𝛼 is not in 𝐴1 nor 𝐴2, we can freely rewrite the substituted types to
any types in the context. In either case, the rewriting in (4.1) can be achieved, so that the
induction hypothesis can be applied to the subgoal. The critical point here is that, although



28 Recursive Subtyping for All

the substitution form in the context is indeed affected by the new bound introduced by
rule S-equivall, since kernel 𝐹𝜇

≤ requires all pairs of the bounds in the subtyping relation
to be equivalent, the type 𝑆 will converge into the types 𝐶 and 𝐷 in the end.

The generalized unfolding lemma for kernel 𝐹
𝜇
≤≥ . In Zhou et al. (2023)’s work, an

extension to kernel 𝐹
𝜇
≤ is proposed, called 𝐹

𝜇
≤≥ , which extends kernel 𝐹

𝜇
≤ with lower

bounded quantification and bottom types. It is worth noting that these new features will
break the proof of Lemma 4.2 we have discussed above. The interaction of lower bounds
and upper bounds invalidates the following inversion lemma for rule S-vartrans, which
has been used to prove Lemma 4.2:

Lemma 4.4. If 𝛼 ≤ 𝐴 ∈ Γ and Γ ⊢ 𝛼 ≤ 𝐵, where 𝛼 ≠ 𝐵, then Γ ⊢ 𝐴 ≤ 𝐵.

In Lemma 4.2, there is more than one subtyping statement on the premises related to type
𝐴 and 𝐵. During the proof we do induction on the premise (1), and use the inversion lemma
to match the subderivation of [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵 with the induction hypothesis we
get from the premise (1). Lemma 4.4 holds when the bounds in the context can only have one
direction. However, when we have both kinds of bounds in the context, a counter-example
can be found as follows:

𝑥 ≤ ⊤, 𝑦 ≥ 𝑥 ⊢ 𝑥 ≤ 𝑦 =⇒\ 𝑥 ≤ ⊤, 𝑦 ≥ 𝑥 ⊢ ⊤ ≤ 𝑦

To avoid using this inversion lemma in the proof of unfolding lemma, we need to refine
the generalized unfolding lemma for kernel 𝐹𝜇

≤ :

Lemma 4.5 (The generalized unfolding lemma for 𝐹𝜇
≤≥ in Zhou et al. (2023)). If

1. Γ1, 𝛼 ≤ ⊤, Γ2 ⊢ 𝐴 and Γ1, 𝛼 ≤ ⊤, Γ2 ⊢ 𝐵;
2. 𝐺 ⊢ [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵;
3. 𝐺 differs from Γ1, 𝛼 ≤ ⊤, Γ2 [𝛼 ↦→ 𝑆𝛼] only in the components labeled by 𝛼, where

𝑆𝛼 can be replaced by 𝑇 𝛼 that satisfies Γ2 ⊢ 𝜇𝛼. 𝑆 ≤ 𝜇𝛼.𝑇 and Γ2 ⊢ 𝜇𝛼.𝑇 ≤ 𝜇𝛼. 𝑆,
then
1. Γ1 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼. 𝑆 and Γ1 ⊢ 𝜇𝛼. 𝑆 ≤ 𝜇𝛼.𝐷 implies Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→

𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵;
2. Γ1 ⊢ 𝜇𝛼.𝐷 ≤ 𝜇𝛼. 𝑆 and Γ1 ⊢ 𝜇𝛼. 𝑆 ≤ 𝜇𝛼.𝐶 implies Γ1, Γ2 [𝛼 ↦→ 𝜇𝛼. 𝑆] ⊢ [𝛼 ↦→

𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵.

In the refined generalized unfolding lemma, we integrate the two subtyping statements
into one statement, by having the premise (1) in Lemma 4.2 induced implicitly. This can
be justified by the fact that the one-time unfolding is implicitly derived from the nominal
unfolding:

Lemma 4.6 (Inversion on nominal unfoldings). If Γ ⊢ [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵 then
Γ ⊢ 𝐴 ≤ 𝐵.

To accommodate this change, the context is also refined to be more general, by allowing
the substitution type in the subtyping context of premise (2) to be any type 𝑇 equivalent to
𝑆. We omit the detailed proof for this lemma, since it was done in the appendix of Zhou
et al. (2023), and is no longer used in the generalized unfolding lemma for full 𝐹𝜇

≤ and 𝐹
𝜇∧
≤≥
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we will present in this paper. However, the idea of using Lemma 4.6 to avoid the issue of
using Lemma 4.4 still applies, as we will show next.

The generalized unfolding lemma for full 𝐹𝜇
≤ . It is not straightforward to generalize the

unfolding lemma to full 𝐹𝜇
≤ . As we have seen in the last observation of Lemma 4.2, the

proof relies on the fact that the bounds in the subtyping relation are equivalent, so that
during the proof, the intermediate type 𝜇𝛼. 𝑆 can be rewritten to 𝜇𝛼.𝐶 or 𝜇𝛼.𝐷. However,
in full 𝐹𝜇

≤ we use rule S-fullall, which fails to maintain the equivalence of the bounds.
We need to consider a new approach to generalize the unfolding lemma for full 𝐹𝜇

≤ .
If we revisit the use of the generalized substitution type 𝑆 in the context Γ2 in Lemma 4.2,

we can see that, during the proof, in most cases we just pass the same type 𝑆 around in
the induction hypothesis. The exception is for the case of S-vartrans, where the type 𝑆 is
instantiated to 𝐶 or 𝐷. This suggests that the issues with the unfolding lemma in full 𝐹𝜇

≤
can be solved if we can find a different approach to the S-vartrans case and remove the
intermediate type 𝑆 from the generalized unfolding lemma. In that case, the requirement
for the equivalent bounds can also be lifted.

To this end, we note that the introduction of the type 𝑆 in Lemma 4.2 is essentially an
over-generalization, since throughout the derivation of [𝛼 ↦→𝐶𝛼] 𝐴 ≤ [𝛼 ↦→ 𝐷𝛼] 𝐵, only
the substitution 𝐶 or 𝐷 will be introduced into the context. Thus, the generalized unfolding
lemma can focus only on the substitution of 𝐶 or 𝐷. However, in full 𝐹𝜇

≤ , it can happen that
we cannot find a uniform substitution type for the variable 𝛼 in the context Γ2. Due to the
contravariant subtyping in rule S-arrow, the substitutions can flip between the two sides
of the subtyping relation, so both 𝐶 and 𝐷 can be introduced into the context. Therefore,
we define the following notion of related contexts to characterize such contexts:

Definition 4.7 (Related contexts). Given a type variable 𝛼, an initial context Γ0 and two
types 𝜇𝛼.𝐶, 𝜇𝛼.𝐷, two contexts Γ and Γ𝜇 are related, written Γ � Γ𝜇, if they can be derived
using the following rules:

Γ � Γ𝜇 (Related contexts)

ExtEnv-base
⊢ Γ0 𝛼 ∉ dom Γ0

Γ0, 𝛼 ≤ ⊤ � Γ0

ExtEnv-consC
Γ′ � Γ′

𝜇 𝛽 ∉ dom Γ0

Γ′, 𝛽 ≤ [𝛼 ↦→𝐶𝛼]𝐴 � Γ′
𝜇, 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴

ExtEnv-consD
Γ′ � Γ′

𝜇 𝛽 ∉ dom Γ0

Γ′, 𝛽 ≤ [𝛼 ↦→ 𝐷𝛼]𝐴 � Γ′
𝜇, 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐴

The definition of related contexts is parameterized by a type variable 𝛼 and a subtyping
relation Γ0 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼. 𝐷 3. As we will see, the two contexts Γ and Γ𝜇 are essentially the
subtyping contexts that will be used in the generalized unfolding lemma for the premise and

3 We say that the related contexts are parameterized by the subtyping relation is just for the sake of convenience.
They are actually parameterized by the components in the subtyping relation, i.e. the variable 𝛼, the shared
context Γ0, and the types 𝐶 and 𝐷. Whether the subtyping relation Γ0 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷 holds does not matter,
as we shall see shortly.
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the conclusion respectively. They extend the context Γ0 with new bindings that are either
under the substitution 𝐶 or 𝐷. Moreover, each pair of bindings in the two contexts should
be matched in terms of the substitution type𝐶 or 𝐷 and the base type 𝐴 should be the same.
For example, consider the following instance of the unfolding lemma we aim to prove:

Γ1 ⊢ [𝛼 ↦→𝐶𝛼] (𝐴1 → 𝐴2) ≤ [𝛼 ↦→ 𝐷𝛼] (𝐵1 → 𝐵2)
Γ2 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] (𝐴1 → 𝐴2) ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] (𝐵1 → 𝐵2)

where Γ1 = 𝛼 ≤ ⊤, 𝛽 ≤ [𝛼 ↦→𝐶𝛼]𝑇1, 𝛾 ≤ [𝛼 ↦→ 𝐷𝛼]𝑇2
Γ2 = 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝑇1, 𝛾 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝑇2

and 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝑇1, 𝑇2 can be any well-formed types.

By definition, Γ1 and Γ2 are related under the subtyping relation · ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷, i.e.
Γ1 � Γ2. When proving the above goal, for the contravariant case of function types, we need
to show that the following holds:

Γ1 ⊢ [𝛼 ↦→ 𝐷𝛼]𝐵1 ≤ [𝛼 ↦→𝐶𝛼]𝐴1
Γ2 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵1 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴1

To prove this by induction, Γ1 and Γ2 should be related under the subtyping relation
· ⊢ 𝜇𝛼.𝐷 ≤ 𝜇𝛼.𝐶, that flips the order of 𝜇𝛼.𝐶 and 𝜇𝛼.𝐷 in the parameter of the related
contexts. This is possible because the related contexts are defined to be symmetric in
terms of the substitution types 𝐶 and 𝐷. This flexibility allows us to prove the generalized
unfolding lemma for full 𝐹𝜇

≤ without the need for the intermediate type 𝑆 as in Lemma 4.2
to handle the contravariance.

With the notion of related contexts, we can prove inversion lemmas for looking up the
bounds in the related contexts:

Lemma 4.8 (Inversion lemma for related contexts). If Γ and Γ𝜇 are related under the variable
𝛼, the shared context Γ0, and the types 𝜇𝛼.𝐶 and 𝜇𝛼.𝐷, then for any type variable 𝛽, if
𝛽 ≤𝑈 ∈ Γ and 𝛽 ≠ 𝛼, one of the following holds:

1. there exists 𝑈′, s.t. 𝑈 = [𝛼 ↦→𝐶𝛼]𝑈′ and 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝑈′ ∈ Γ𝜇, or
2. there exists 𝑈′, s.t. 𝑈 = [𝛼 ↦→ 𝐷𝛼]𝑈′ and 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝑈′ ∈ Γ𝜇.

We can now state the generalized unfolding lemma for full 𝐹𝜇
≤ :

Lemma 4.9 (The generalized unfolding lemma for full 𝐹𝜇
≤ ). If contexts Γ and Γ𝜇 are related

under variable 𝛼 and if Γ0 ⊢ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷, then
1. Γ ⊢ [𝛼 ↦→𝐶𝛼]𝐴 ≤ [𝛼 ↦→ 𝐷𝛼]𝐵 implies Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵
2. Γ ⊢ [𝛼 ↦→ 𝐷𝛼]𝐴 ≤ [𝛼 ↦→𝐶𝛼]𝐵 implies Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐵
3. Γ ⊢ [𝛼 ↦→𝐶𝛼]𝐴 ≤ [𝛼 ↦→𝐶𝛼]𝐵 implies Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐵
4. Γ ⊢ [𝛼 ↦→ 𝐷𝛼]𝐴 ≤ [𝛼 ↦→ 𝐷𝛼]𝐵 implies Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵

Compared to previous versions of the unfolding lemma, in addition to conclusion (1) and
(2), which talk about the covariant and contravariant substitutions, now we add two more
conclusions (3) and (4) for the case where the substitutions are the same as 𝐶 or 𝐷. As
we will show in the proof sketch below, these two additional conclusions generate useful
induction hypotheses for the proof of rule S-vartrans, so that we no longer need to rely on
the intermediate type 𝑆 as we did in Lemma 4.2. Moreover, we follow the same approach
as in Lemma 4.9 to drop the premise of 𝐴 ≤ 𝐵 and avoid the use of inversion lemmas.
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Proof We prove the four mutually dependent goals in the lemma by induction on the
premise Γ ⊢ [𝛼 ↦→?𝛼]𝐴 ≤ [𝛼 ↦→?𝛼]𝐵. We unroll the mutual induction hypothesis here and
assume four separate induction hypotheses available in the proof for the sake of presentation.
In the rest of the proof we will refer to them as IH(𝑛) for the induction hypothesis generated
by the proof goal (𝑛). We show the interesting cases below:

• Rule S-vartrans: We show the proof goal (1) here. Assume 𝐴 = 𝛽, where 𝛽 ≤𝑈 ∈ Γ,
and Γ ⊢𝑈 ≤ [𝛼 ↦→ 𝐷𝛼]𝐵, by Lemma 4.8 we get two cases:

1. There exists 𝑈′, 𝑈 = [𝛼 ↦→𝐶𝛼]𝑈′ and 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝑈′ ∈ Γ𝜇. We need to
show Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶]𝑈′ ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵. We can apply IH(1) directly.

2. There exists 𝑈′, 𝑈 = [𝛼 ↦→ 𝐷𝛼]𝑈′ and 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝑈′ ∈ Γ𝜇. We need to
show Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝑈′ ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵. We can apply IH(4) directly. Note
that in this case, the substituted type on both sides is 𝐷, which motivated us to
state cases (3) and (4) in the lemma.

The proof for the other cases is similar to this one, by first applying Lemma 4.8 to
get the corresponding cases, and then choosing the induction hypothesis that applies
to complete the proof.

• Rule S-arrow: Assume 𝐴 = 𝐴1 → 𝐴2 and 𝐵 = 𝐵1 → 𝐵2, for proof goal (1), we need
to prove two subgoals:

1. Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵1 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴1
2. Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴2 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵2

The covariant subgoal (2) follows from IH(1) directly. In subgoal (1), due to the
contravariant subtyping, the substituted types are flipped in the subtyping relation.
Therefore we need to apply IH(2) to complete the proof. The proof of subgoal (2) is
similar to the proof of subgoal (1), by applying IH(1) to the contravariant subgoal,
and IH(2) to the covariant subgoal. For subgoals (3) and (4), the induction hypothesis
can be applied directly since the substituted types are the same on both sides.

• Rule S-fullall: Assume 𝐴 =∀(𝛽 ≤ 𝐵1). 𝐴1 and 𝐵 =∀(𝛽 ≤ 𝐵2). 𝐴2. We show the
proof of goal (1) here. In this case we need to prove two subgoals:

1. Γ𝜇 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵2 ≤ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐵1
2. Γ𝜇, 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵2 ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶]𝐴1 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐴2

The proof of subgoal (1) is similar to the proof of subgoal (1) in the rule S-arrow
case, by applying IH(2) to the contravariant subgoal. Next, in order to apply IH(1) to
the covariant subgoal (2), we need to show that the context (Γ, 𝛽 ≤ [𝛼 ↦→ 𝐷𝛼]𝐵2) and
(Γ𝜇, 𝛽 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷]𝐵2) are related, which follows from the definition of related
contexts. Therefore, we can apply IH(1) to complete the proof. The proof of other
goals is similar to the proof of goal (1). Thanks to our definition of related contexts,
we do not need to worry about whether the substituted type is 𝐶 or 𝐷 when we add
a new binding into the context in the proof of subgoal (2). ■

To conclude, in this generalized unfolding lemma, we introduce two more conclusions
for the case where the substitutions are the same as 𝐶 or 𝐷, and we define related contexts
to characterize the contexts that will be used in the proof. In this way, we prove the case of
rule S-vartrans without the need for an intermediate type 𝑆, so that rule S-fullall can be
handled as well. In fact, the proof technique we use here is quite general. We also redevelop
a generalized unfolding lemma for kernel 𝐹𝜇

≤ using the same approach as in full 𝐹𝜇
≤ . As we
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will see, this generalized unfolding lemma can also be used to prove 𝐹
𝜇∧
≤≥ , without the need

for significant changes.

4.2 Conservativity

One important feature of 𝐹𝜇
≤ is that it is conservative over 𝐹≤ . Conservativity means that

equivalent 𝐹≤ judgements in 𝐹
𝜇
≤ should behave in the same way as in 𝐹≤ . For instance, if a

subtyping statement is valid in 𝐹≤ , then it should also be valid in 𝐹
𝜇
≤ . Dually, if a subtyping

statement over 𝐹≤-types is invalid in 𝐹≤ , then it should also be invalid in 𝐹
𝜇
≤ . In some

calculi, including extensions of 𝐹≤ with equi-recursive types (Ghelli, 1993), conservativity
is lost after the addition of new features.

To avoid ambiguity, we let ⊢𝐹 Γ be the well-formedness of environment, Γ ⊢𝐹 𝐴 be
the well-formedness of types, Γ ⊢𝐹 𝐴 ≤ 𝐵 be the subtyping relation, ⊢𝐹 𝑒 be the well-
formedness of expressions, and Γ ⊢𝐹 𝑒 : 𝐴 be the typing relation in 𝐹≤ , where the subscript
𝐹 stands for the original 𝐹≤ calculus. All the definitions and rules for 𝐹≤ are essentially
subsets of the corresponding definitions and rules for 𝐹𝜇

≤ presented in §3, except that the
rules involving records and recursive types are removed, and that in kernel 𝐹≤ , the rule S-
equivall is replaced with the rule S-kernelall. Note that the properties we will show
below in this section are demonstrated in both variants of 𝐹𝜇

≤ . In other words, full 𝐹𝜇
≤ is

conservative over full 𝐹≤ and kernel 𝐹𝜇
≤ is conservative over kernel 𝐹≤ .

Conservativity of subtyping. Our conservativity result for subtyping is relatively easy to
establish:

Lemma 4.10 (Conservativity for subtyping). If Γ, 𝐴, and 𝐵 are well-formed in 𝐹≤ , namely
(1) ⊢𝐹 Γ, (2) Γ ⊢𝐹 𝐴, and (3) Γ ⊢𝐹 𝐵, then Γ ⊢𝐹 𝐴 ≤ 𝐵 if and only if Γ ⊢ 𝐴 ≤ 𝐵.

Here the well-formedness conditions ensure that Γ, 𝐴 and 𝐵 must be respectively a valid
𝐹≤ environment, and valid 𝐹≤ types. That is they cannot contain recursive types (or record
types). Therefore, the lemma states that for environments and types without recursive types,
the two subtyping relations (for 𝐹≤ and 𝐹

𝜇
≤ ) are equivalent, accepting the same statements.

The proof of this lemma is straightforward, except for the case of rule S-equivall
from 𝐹

𝜇
≤ to 𝐹≤ , as the rule S-kernelall in 𝐹≤ requires the two types to be exactly the

same instead of being equivalent. This is easy to fix, given that kernel 𝐹≤ subtyping is
antisymmetric. This property was shown by Baldan et al. (1999) for a restricted form of F-
bounded quantification, and we adapt their proof to our setting. The antisymmetry property
is stated as follows:

Lemma 4.11 (Antisymmetry of kernel 𝐹≤ subtyping). If Γ ⊢𝐹 𝐴 ≤ 𝐵 and Γ ⊢𝐹 𝐵 ≤ 𝐴 in
kernel 𝐹≤ , then 𝐴 = 𝐵.

Conservativity of typing. It is straightforward to obtain one direction of the conservativity
result, from a typing relation in 𝐹≤ to a typing relation in 𝐹

𝜇
≤ . As for the reverse direction,

the situation is more complicated. If we want to derive Γ ⊢𝐹 𝑒 : 𝐴 from Γ ⊢ 𝑒 : 𝐴, when doing
induction, for the subsumption case (rule typing-sub), we need to guess an intermediate
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type. However, we do not know if it involves recursive types or not. Consider the following
example:

⊢ 𝜆𝑥. 𝑥 : ⊤→⊤ ⊢⊤→⊤ ≤ (𝜇𝛼.⊤) →⊤typing-sub ⊢ 𝜆𝑥. 𝑥 : (𝜇𝛼.⊤) →⊤ ⊢ (𝜇𝛼.⊤) →⊤ ≤ ⊤typing-sub ⊢ 𝜆𝑥. 𝑥 : ⊤

Although the final judgement ⊢ 𝜆𝑥. 𝑥 : ⊤ does not involve recursive types, the typing
subderivations can contain recursive types. As a result, the induction hypothesis cannot
be applied.

This problem can be addressed by employing the algorithmic formulation of 𝐹𝜇
≤ , shown

in §3.4. With algorithmic typing, we can have more precise information about the types
of an expression, since algorithmic typing always gives the minimum type. Therefore, it
can be proved that, for expressions that do not use fold/unfold constructors, their minimum
types do not contain recursive types either. We state this property as the conservativity
lemma for subtyping:

Lemma 4.12. If Γ, 𝐴, and 𝑒 are well-formed in 𝐹≤ , namely (1) ⊢𝐹 Γ, (2) Γ ⊢𝐹 𝐴, and (3)
⊢𝐹 𝑒, then Γ ⊢𝑎 𝑒 : 𝐴 implies Γ ⊢𝐹 𝑒 : 𝐴.

Now, given a typing relation Γ ⊢ 𝑒 : 𝐴 in 𝐹
𝜇
≤ , we first use the minimum typing property

(Theorem 3.10) to obtain its minimum type 𝐵 such that Γ ⊢𝑎 𝑒 : 𝐵 and Γ ⊢ 𝐵 ≤ 𝐴. Applying
Lemma 4.12 and Lemma 4.10, we complete the conservativity proof for the declarative
version of 𝐹𝜇

≤ .

Theorem 4.13 (Conservativity). If Γ, 𝐴, and 𝑒 are well-formed in 𝐹≤ , namely (1) ⊢𝐹 Γ, (2)
Γ ⊢𝐹 𝐴, and (3) ⊢𝐹 𝑒, then Γ ⊢𝐹 𝑒 : 𝐴 if and only if Γ ⊢ 𝑒 : 𝐴.

4.3 Decidability

This section focuses on the decidability of kernel 𝐹
𝜇
≤ . We first start by reviewing the

approaches to proving decidability in kernel 𝐹≤ , and in nominal unfoldings, and then
describe our approach to prove decidability. These two previous approaches to prov-
ing decidability employ different measures, which creates a challenge for proving the
decidability of kernel 𝐹𝜇

≤ .

Decidability of kernel 𝐹≤ . It is well-known that bounded quantification for full 𝐹≤ is
undecidable (Pierce, 1994). However, for kernel 𝐹≤ , identical bounds make the system
decidable. A common practice is to define a weight function to compute the size of a type
(Pierce, 2002):

weightΓ (⊤) = 1
weightΓ1 ,𝛼≤𝐴,Γ2 (𝛼) = 1 + weightΓ1 (𝐴)
weightΓ (∀(𝛼 ≤ 𝐴). 𝐵) = 1 + weightΓ,𝛼≤𝐴(𝐵)
weightΓ (𝐴→ 𝐵) = 1 + weightΓ (𝐴) + weightΓ (𝐵)

For a universal type, we store its bound into a context Γ, and when we meet the universal
variable, we retrieve its bound from the context and compute the size recursively. Since the
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size of a conclusion is always greater than any premise, this measure can be used to show
that the subtyping algorithm in kernel 𝐹≤ terminates for all inputs.

Decidability of nominal unfoldings. The nominal unfolding rule in simple calculi with
subtyping is also decidable (Zhou et al., 2022). Compared with kernel 𝐹≤ , the decidability
proof of nominal unfoldings is trickier. Based on the substitution of the type body, after
every unfolding, the size of types will increase. Thus a straightforward induction on the
size of types does not work. Zhou et al. (2022) choose a size measure based on an over-
approximation of the height of the fully unfolded tree. Concretely, the height of a type 𝐴 in
a measure context Ψ (Ψ := · | Ψ, 𝛼 ↦→ 𝑖, where 𝑖 is a natural number) is defined as:

heightΨ (⊤) = 0
heightΨ (𝛼) = Ψ(𝛼) if 𝛼 ∈ Ψ else 0
heightΨ (𝐴→ 𝐵) = 1 + max(heightΨ (𝐴), heightΨ (𝐵))
heightΨ (𝜇𝛼. 𝐴) = 1 + let 𝑖 = heightΨ,𝛼 ↦→0 (𝐴) in heightΨ,𝛼 ↦→𝑖+1 (𝐴)

The size measure of a type 𝐴 is defined as height(𝐴) where the context is empty. In contrast
to kernel 𝐹≤ , the context here is used to store the size of the corresponding recursive
variables. The key design in the height function is that the measure of a recursive type
𝜇𝛼. 𝐴 is computed by first setting the measure of the recursive variable to 0, and then
computing the measure of the body, which achieves the effect of measuring the type body
𝐴 considering 𝛼 as a free variable. The computed measure is then incremented by one to
account for the labeled type 𝐴𝛼, then height(𝐴) is computed again with the context updated
for the recursive variable, so that intuitively the result of height(𝜇𝛼. 𝐴) measures the size
of [𝛼 ↦→ 𝐴𝛼]𝐴 plus one. Zhou et al. (2022) prove that such height measure work well with
nominal unfolding rules, as the height of a type will precisely decrease by one for every
nominal unfolding.

Decidability of kernel 𝐹
𝜇
≤ . To combine these two approaches, we need to extend the

measure of nominal unfoldings with the measure of kernel 𝐹≤ in a seamless manner. One
easy fix to unify the two measures is to use the maximum function for both measures, as
the nominal unfolding measure does. However, there are three remaining main challenges
that we must address:
• Inconsistent measures for variables: In the height function, type variables are treated as

base cases, whereas in the weight function, the computation continues by retrieving the
variable’s bound from the context. In kernel 𝐹𝜇

≤ , we do not distinguish between recursive
and universal variables, so we need to find a unified way to measure variables.

• Different purposes of contexts: The context in the weight function straightforwardly
keeps track of universal bounds, which are later retrieved to compute the measure of a
universal variable. This ensures that the premises in rule S-vartrans have smaller type
measures than the conclusion. However, this trick does not work for nominal unfoldings,
as shown by the case heightΨ (𝜇𝛼. 𝐴), where the context is extended with two different
measures for the same variable at different points in the computation to simulate the
nominal unfolding. This discrepancy complicates the unification of the two measures.

• Loss of measure information with equivalent bounds: We use rule S-equivall instead
of the standard rule S-kernelall for 𝐹≤ . Given the equivalent bounds in kernel 𝐹≤ ,
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the measure for the subtyping relation Γ ⊢ ∀(𝛼 ≤ 𝐴1). 𝐵1 ≤ ∀(𝛼 ≤ 𝐴2). 𝐵2 includes the
measures of 𝐴1, 𝐴2, 𝐵1, and 𝐵2. However, the measure for the premiseΓ, 𝛼 ≤ 𝐴2 ⊢ 𝐵1 ≤ 𝐵2
loses the measure of 𝐴1 because it is not stored.
We first show the measure used for the decidability of kernel 𝐹𝜇

≤ , and then discuss how it
addresses the concerns above. The measure is relatively simple and based on the approach
from Zhou et al. (2022). We use the same context Ψ := · | Ψ, 𝛼 ↦→ 𝑖 and now it is used to store
the measures of (both universal and recursive) variables during the measure computation.
Then, a measure function sizeΨ (𝐴), is defined on types as follows:

sizeΨ (nat) = 1
sizeΨ (⊤) = 1
sizeΨ (𝐴→ 𝐵) = 1 + sizeΨ (𝐴) + sizeΨ (𝐵)
sizeΨ (𝐴𝛼) = 1 + sizeΨ (𝐴)

sizeΨ (𝛼) = 1 +
{
Ψ(𝛼) 𝛼 ∈ Ψ

1 𝛼 ∉ Ψ

sizeΨ (∀(𝛼 ≤ 𝐴). 𝐵) = let 𝑖 := sizeΨ (𝐴) in 1 + 𝑖 + sizeΨ,𝛼 ↦→𝑖 (𝐵)
sizeΨ (𝜇𝛼. 𝐴) = let 𝑖 := sizeΨ,𝛼 ↦→1 (𝐴) in 1 + sizeΨ,𝛼 ↦→𝑖 (𝐴)
sizeΨ ({𝑙𝑖 : 𝐴𝑖

𝑖∈1· · ·𝑛}) = 𝑛 +∑𝑛
𝑖=1 sizeΨ (𝐴𝑖)

The formulation of the size function is very similar to the height function. We have an extra
rule for universal types, and slightly adjust the variable and recursive cases. The measure
of universal types is the sum of the measure of the bound and the measure of the body.
For variables, one is added when they are retrieved. Accordingly, we do not need to add
one when storing the size of recursive variables into the context. For atomic constructs, we
follow the weight function and measure them as 1.

We solve the first challenge in a straightforward way: there is no need to distinguish
between recursive and universal variables. The fact that all recursive variables in the
context are bounded by a top type whose measure is simply one fits our needs naturally.

As for the second concern, despite the different purposes of contexts, the key ideas
of measuring types in kernel 𝐹≤ and nominal unfoldings are the same: they both relate
the measure of a variable to what the variable will be substituted with in the context of
the subtyping rule, either its unfolded form as a labeled type or its bound type. A slight
modification is made based on the definition of weight. In the weight function, for a universal
variable, its bound is first retrieved and then the measure is computed. To align with the
“pre-computation” mechanism of measuring nominal unfoldings (𝑖 := sizeΨ,𝛼 ↦→1 (𝐴)), we
also pre-compute the measure of the bound (𝑖 := sizeΨ (𝐴)) in the size function, so that we
retrieve the measure instead of the type bound from the context. In a well-formed type,
variables are guaranteed to be unique, so we can use a single context Ψ to store the measures
for both recursive variables and universal variables.

A subtler issue arises with variables in the initial subtyping context. When measuring
nominal unfoldings, the context in a subtyping relation is simply a list of variables, without
any bound information, so variables that occur freely can be counted as 0 in the height
function. In contrast, now the subtyping context stores the bound information, and the
measures of bounds play a role in deciding the subtyping relation. To address this issue,
we need to make sure that the bound information is pre-computed in the measure function.
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We transform a subtyping context into an environment containing measures Ψ, which track
universal variables. In our decidability proof statement (Lemma 4.14), Ψ is computed from
the subtyping context Γ by an evaluation function 𝑒𝑣𝑎𝑙 : Γ ↩→Ψ, defined as:

eval(·) = ·
eval(Γ′, 𝑥 : 𝐴) = eval(Γ′)
eval(Γ′, 𝛼 ≤ 𝐴) = let Ψ′ = eval(Γ′) in Ψ′, 𝛼 ↦→ sizeΨ′ (𝐴)

With both 𝑒𝑣𝑎𝑙 and 𝑠𝑖𝑧𝑒 we can then state the decidability theorem:

Lemma 4.14. If sizeeval(Γ) (𝐴) + sizeeval(Γ) (𝐵) ≤ 𝑘 then there exists an algorithm that
terminates and decides whether Γ ⊢ 𝐴 ≤ 𝐵.

Theorem 4.15 (Decidability of kernel 𝐹𝜇
≤ subtyping). Γ ⊢ 𝐴 ≤ 𝐵 is decidable in kernel 𝐹𝜇

≤ .

Theorem 4.16 (Decidability of kernel 𝐹𝜇
≤ typing). Γ ⊢ 𝑒 : 𝐴 is decidable in kernel 𝐹𝜇

≤ .

As for the third concern, note that in 𝐹≤ , the subtyping relation is antisymmetric
(Baldan et al., 1999). Adding recursive types does not change the property of antisym-
metry. However, the addition of records makes the subtyping relation not antisymmetric:
two equivalent record types may be syntactically different. The lack of antisymmetry poses
a challenge for our decidability proof, in particular for rule S-equivall. Nevertheless, for
kernel 𝐹𝜇

≤ two equivalent records must have the same set of fields, and the two types for each
field must be equivalent. Therefore, the measures of two equivalent record types remain the
same. As a result, the measure of two equivalent bounds 𝐴1 and 𝐴2 is equal, as Lemma 4.17
describes. The measure information of type 𝐴1 can therefore be reconstructed from type
𝐴2, addressing the final concern with decidability.

Lemma 4.17. If Γ ⊢ 𝐴 ≤ 𝐵 and Γ ⊢ 𝐵 ≤ 𝐴 then sizeeval(Γ) (𝐴) = sizeeval(Γ) (𝐵).

Undecidability of subtyping full 𝐹𝜇
≤ . It is well known that the full 𝐹≤ subtyping relation

is undecidable (Pierce, 1994). Although the original formulation of full 𝐹≤ includes the
transitivity rule, it can be reformulated into a syntax-directed version (Curien and Ghelli,
1992) that eliminates the transitivity rule, as we have adopted in 𝐹

𝜇
≤ . The syntax-directed

version of 𝐹≤ naturally forms a subtype checking algorithm. However, for full 𝐹≤ , Ghelli
(1993) demonstrated a non-terminating example for the subtyping algorithm. Furthermore,
Pierce (1994) proved the undecidability of full 𝐹≤ by encoding a Turing machine using
full 𝐹≤ . Since we have shown in §4.2 that full 𝐹𝜇

≤ is conservative over the syntax-directed
version of full 𝐹≤ , Ghelli (1993)’s counterexample for full 𝐹≤ also applies to full 𝐹

𝜇
≤ .

Therefore, the undecidability of full 𝐹𝜇
≤ is a corollary of the undecidability of full 𝐹≤ and

the conservativity of full 𝐹𝜇
≤ over full 𝐹≤ .

Theorem 4.18 (Undecidability of typing and subtyping for full 𝐹𝜇
≤ ). The subtyping relation

Γ ⊢ 𝐴 ≤ 𝐵 and the typing relation Γ ⊢ 𝑒 : 𝐴 are undecidable in full 𝐹𝜇
≤ .

5 A Calculus with Lower and Upper Bounded Quantification

In this section we introduce an extension of 𝐹
𝜇
≤ , called 𝐹

𝜇∧
≤≥ , with lower bounded quan-

tification, the bottom type, and an alternative formulation of record types in terms of
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intersections of single field record types. While upper bounded quantification has received
a lot of attention in previous research, lower bounded quantification for an 𝐹≤-like language
is much less explored, though it appears in a few works (Oliveira et al., 2020; Amin and
Rompf, 2017). We follow the same approach as Oliveira et al. (2020), whose 𝐹≤ extension
allows type variables to have either a lower bound or an upper bound, but not both bounds
at once. We also introduce single-field record types and intersection types to replace record
types in 𝐹

𝜇
≤ . Intersection types enable type level record extension and further applications

resembling the treatment of object types in the DOT calculus (Rompf and Amin, 2016).
As discussed in §2.2, our extensions in 𝐹

𝜇∧
≤≥ enable further applications, such as a form of

extensible encodings of datatypes. We have proved all the same results for 𝐹𝜇∧
≤≥ that were

proved for kernel 𝐹𝜇
≤ , including type soundness, decidability, transitivity and conservativity

over 𝐹≤ .

5.1 The 𝐹
𝜇∧
≤≥ Calculus

The syntax of types, expressions, values and contexts for the extended 𝐹
𝜇∧
≤≥ calculus is

shown below. The main novelties are that bottom types and lower bounded quantification
are introduced. We also remove record types ({𝑙𝑖 : 𝐴𝑖

𝑖∈1· · ·𝑛}) from the syntax, and instead
introduce intersection types and single-field record types. The syntactic differences are
highlighted in gray .

Types 𝐴, 𝐵, . . . F nat | ⊤ | ⊥ | 𝐴1 → 𝐴2 | 𝛼 | 𝜇𝛼. 𝐴 | 𝐴𝛼

| ∀(𝛼 ≤ 𝐴). 𝐵 | ∀(𝛼 ≥ 𝐴). 𝐵 | 𝐴&𝐵 | {𝑙 : 𝐴}
Expressions 𝑒 F 𝑥 | i | 𝑒1 𝑒2 | 𝜆𝑥 : 𝐴. 𝑒 | 𝑒 𝐴 | Λ(𝛼 ≤ 𝐴). 𝑒 | Λ(𝛼 ≥ 𝐴). 𝑒

| unfold [𝐴] 𝑒 | fold [𝐴] 𝑒 | {𝑙𝑖 = 𝑒𝑖
𝑖∈1· · ·𝑛} | 𝑒.𝑙

Values 𝑣 F i | 𝜆𝑥 : 𝐴. 𝑒 | fold [𝐴] 𝑣 | Λ(𝛼 ≤ 𝐴). 𝑒 | Λ(𝛼 ≥ 𝐴). 𝑒
| {𝑙𝑖 = 𝑣𝑖

𝑖∈1· · ·𝑛}
Contexts Γ F · | Γ, 𝛼 ≤ 𝐴 | Γ, 𝛼 ≥ 𝐴 | Γ, 𝑥 : 𝐴

Subtyping, typing and reduction. The well-formedness for the additional bottom types,
single-field record types and universal types with lower bounds are standard, as shown in
Figure 6. For intersection types, we only allow single-field record types, or intersections
of record types with distinct labels to be well-formed. This can be characterized by a
compatibility relation 𝐴 # 𝐵 between types. We make this simplified design choice to avoid
the complexity of general unrestricted intersection types, which would cause trouble in the
two key properties of the type system, namely the structural unfolding lemma (Lemma 5.11)
and the decidability of subtyping (Theorem 5.14), as we will discuss in §5.3.

As for the subtyping rules, compared with 𝐹
𝜇
≤ , we add rules S-bot, S-vartranslb,

and S-equivalllb for subtyping with bottom types and lower bounded quantification. The
record subtyping rule S-rcd in 𝐹

𝜇
≤ is now replaced by rule S-srcd for subtyping single-field

record types together with rules S-andla, S-andlb, and S-andr for subtyping intersection
types. Note that in the subtyping rule for intersection types, we also add the compatibility
restriction in the premise, to ensure the regularity of the subtyping relation (Lemma 5.1).

Lemma 5.1 (Regularity of subtyping in 𝐹
𝜇∧
≤≥). If Γ ⊢ 𝐴 ≤ 𝐵 then the following well-

formedness conditions hold: (1) ⊢ Γ, (2) Γ ⊢ 𝐴 and (3) Γ ⊢ 𝐵.
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𝐴 # 𝐵 (Compatible record types)
Comp-rcd

𝑙1 ≠ 𝑙2

{𝑙1 : A} # {𝑙2 : B}

Comp-andl
A1 # B A2 # B

A1 & A2 # B

Comp-andr
A # B1 A # B2

A # B1 & B2

Γ ⊢ 𝐴 (Well-formedness of types)

wft-bot

Γ ⊢ ⊥

wft-alllb
Γ ⊢ A Γ, 𝛼 ≥ A ⊢ B

Γ ⊢ ∀(𝛼 ≥ A).B

wft-and
Γ ⊢ A Γ ⊢ B A # B

Γ ⊢ A & B

wft-srcd
Γ ⊢ A

Γ ⊢ {𝑙 : A}

Γ ⊢ 𝐴 ≤ 𝐵 (Subtyping)
S-bot
⊢ Γ Γ ⊢ A

Γ ⊢ ⊥ ≤ A

S-srcd
Γ ⊢ A ≤ B

Γ ⊢ {𝑙 : A} ≤ {𝑙 : B}

S-vartranslb
𝛼 ≥ B ∈ Γ Γ ⊢ A ≤ B

Γ ⊢ A ≤ 𝛼

S-equivalllb
Γ ⊢ A1 ≤ A2 Γ ⊢ A2 ≤ A1 Γ, 𝛼 ≥ A2 ⊢ B ≤ C

Γ ⊢ ∀(𝛼 ≥ A1).B ≤ ∀(𝛼 ≥ A2).C

S-andla
Γ ⊢ B Γ ⊢ A ≤ C A # B

Γ ⊢ A & B ≤ C

S-andlb
Γ ⊢ A Γ ⊢ B ≤ C A # B

Γ ⊢ A & B ≤ C

S-andr
Γ ⊢ A ≤ B Γ ⊢ A ≤ C B # C

Γ ⊢ A ≤ B & C

Fig. 6: Additional well-formedness and subtyping rules for 𝐹𝜇∧
≤≥ with respect to 𝐹

𝜇
≤ .

The new subtyping relation is reflexive and transitive:

Theorem 5.2 (Reflexivity for 𝐹𝜇∧
≤≥). If ⊢ Γ and Γ ⊢ 𝐴 then Γ ⊢ 𝐴 ≤ 𝐴.

Theorem 5.3 (Transitivity for 𝐹𝜇∧
≤≥). If Γ ⊢ 𝐴 ≤ 𝐵 and Γ ⊢ 𝐵 ≤ 𝐶 then Γ ⊢ 𝐴 ≤ 𝐶.

Figure 7 shows the changes of 𝐹𝜇∧
≤≥ with respect to 𝐹

𝜇
≤ in terms of typing and reduction.

For lower bounded quantification, we add rules typing-tapplb and typing-tabslb for
typing and rule step-tabslb for reduction, which are simply dual forms of rules typing-
tapp, typing-tabs, and step-tabs, respectively. For records, since the syntax of record
expressions is unchanged, there are no further changes in the reduction rules. The typing
rule for record projections is also simplified. Since record types are now represented
by single-field record types, the projection of a record can be directly modeled by the
subtyping relation. Rules typing-rcdnil and typing-srcd form the typing rules for record
expressions.

Structural folding and lower bounded quantification. The structural folding
rule typing-sfold on recursive types has already been shown for 𝐹

𝜇
≤ . Note that this

rule is not strictly necessary for 𝐹
𝜇
≤ , because a recursive type can only be a subtype of
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Γ ⊢ 𝑒 : 𝐴 (Typing)
typing-tapplb
Γ ⊢ e :∀(𝛼 ≥ B1).B2 Γ ⊢ B1 ≤ A

Γ ⊢ e A : [𝛼 ↦→ A] B2

typing-tabslb
Γ, 𝛼 ≥ A ⊢ e : B

Γ ⊢Λ(𝛼 ≥ A). e :∀(𝛼 ≥ A).B

typing-sproj
Γ ⊢ e : {𝑙 : A}
Γ ⊢ e.𝑙 : A

typing-rcdnil

Γ ⊢ { } : ⊤

typing-srcd
𝑙𝑖

𝑖∈1· · ·𝑛 are disjoint Γ ⊢ 𝑒𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢ {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙1 : A1} & . . . & {𝑙𝑛 : A𝑛}

𝑒1 ↩→ 𝑒2 (Reduction)
step-tabslb

(Λ(𝛼 ≥ A). e) B ↩→ [𝛼 ↦→ B] e

Fig. 7: Additional typing and reduction rules for 𝐹𝜇∧
≤≥ with respect to 𝐹

𝜇
≤ .

another recursive type or the ⊤ type. Thus the effect of structural folding in 𝐹
𝜇
≤ , can be

subsumed by other subtyping/typing rules. Perhaps for this reason, Abadi et al. (1996) have
only considered a structural unfolding rule. However, in 𝐹

𝜇∧
≤≥ , a recursive type can also be

a subtype of a type variable. In this case, the structural folding rule can give the desired
typings to the Add∀ constructors of the Exp1 and Exp2 datatypes that we have presented in
§2.2, while the standard folding rule cannot. The rule typing-sfold has the same form in
𝐹
𝜇∧
≤≥ as in 𝐹

𝜇
≤ . Therefore, we believe that the structural folding rule that we have proposed,

together with the structural unfolding lemma in the metatheory, is broadly applicable to
various type system extensions to 𝐹

𝜇
≤ .

Type soundness. Our type soundness proof for 𝐹𝜇∧
≤≥ is standard:

Theorem 5.4 (Preservation for 𝐹𝜇∧
≤≥). If ⊢ 𝑒 : 𝐴 and 𝑒 ↩→ 𝑒′ then ⊢ 𝑒′ : 𝐴.

Theorem 5.5 (Progress for 𝐹𝜇∧
≤≥). If ⊢ 𝑒 : 𝐴 then 𝑒 is a value or exists 𝑒′, 𝑒 ↩→ 𝑒′.

5.2 Algorithmic typing

Similarly to 𝐹
𝜇
≤ , we can define an algorithmic typing system for 𝐹𝜇∧

≤≥ . We present the changes
in the algorithmic typing rules for 𝐹𝜇∧

≤≥ in Figure 8. Rules atyp-tabslb and atyp-tapplb are
added to handle lower bounded quantification. Rules atyp-rcdnil and atyp-srcd replace
the record typing rule typing-rcd in 𝐹

𝜇
≤ . In addition to these standard changes, there are

also a few special cases that need to be handled for 𝐹𝜇∧
≤≥ .

Firstly, bottom types bring several extra cases to the algorithmic typing rules. In the
declarative system, one can always use the subsumption rule to transform a term with type
⊥ to any function type or universal type, and apply it to any argument, as also observed
by Pierce (1997). To ensure that the algorithmic typing rules are complete, we need to
add rules atyp-appbot and atyp-tappbot to handle these cases. We also develop a similar
treatment for recursive types, as shown in rules atyp-sunfoldbot and atyp-sfoldtop.
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Γ ⊢𝑎 𝑒 : 𝐴 (Algorithmic Typing)
atyp-tabslb

Γ, 𝛼 ≥ A ⊢a e : B

Γ ⊢a Λ(𝛼 ≥ A). e :∀(𝛼 ≥ A).B

atyp-tapplb
Γ ⊢a e : B Γ ⊢ B ⇑ ∀(𝛼 ≥ B1).B2 Γ ⊢ B1 ≤ A

Γ ⊢a e A : [𝛼 ↦→ A] B2

atyp-sproj
Γ ⊢a e : A Γ ⊢ A ⇒l B

Γ ⊢a e.𝑙 : B

atyp-rcdnil

Γ ⊢a { } : ⊤

atyp-srcd
𝑙𝑖

𝑖∈1· · ·𝑛 are disjoint Γ ⊢a 𝑒𝑖 : A𝑖 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛

Γ ⊢a {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙1 : A1} & . . . & {𝑙𝑛 : A𝑛}

atyp-appbot
Γ ⊢a e1 : A Γ ⊢ A ⇑ ⊥ Γ ⊢a e2 : A2

Γ ⊢a e1 e2 : ⊥

atyp-tappbot
Γ ⊢a e : B Γ ⊢ B ⇑ ⊥ Γ ⊢ A

Γ ⊢a e A : ⊥

atyp-sunfoldbot
Γ ⊢a e : A Γ ⊢ B ⇑ ⊥ Γ ⊢ A ≤ B

Γ ⊢a unfold [B] e : ⊥

atyp-sfoldtop
Γ ⊢a e : A Γ ⊢ C ⇓ ⊤ Γ ⊢ C

Γ ⊢a fold [C] e : ⊤

Fig. 8: The additional algorithmic typing rules for 𝐹𝜇∧
≤≥ .

Moreover, with two kinds of bounded quantification, the meanings of the two exposure
functions also need to be refined. For example, the upper exposure function (⇑) is now used
to find the least upper bound in the context that is not an upper-bounded variable, so it will
return the variable itself if the variable is lower bounded. We redefine the exposure functions
for 𝐹𝜇∧

≤≥ in Figure 9. For lower exposure, we also need a dual form of the rule XA-promote,
which finds the greatest lower bound in the context that is not a lower-bounded variable, as
shown in rule XA-downpromote.

Record exposure. Furthermore, for typing record projections, recall that in the declarative
rule typing-sproj, the lookup of the field label 𝑙 is implied by the implicit subtyping
between the expression type and the single field record type for {𝑙 : 𝐴}. In the algorithmic
system, we need to find a mechanism to find such 𝐴. Therefore we define a new exposure
relation for record types in 𝐹

𝜇∧
≤≥ . The record exposure relation Γ ⊢ 𝐴⇒𝑙 𝐵 indicates that

from the type 𝐴we can lookup the field label 𝑙 and get the type 𝐵. We show the full definition
of the record exposure relation in Figure 9. Note that, in addition to single-field record types
(rule XR-srcd) and intersection types (rules XR-anda, XR-andb, and XR-andr), one can
also lookup⊥ from⊥ (rule XR-bot), as well as upper bounds from upper bounded variables
(rule XR-promote). With the record exposure relation we define rule atyp-sproj for record
projections to replace rule atyp-proj in 𝐹

𝜇
≤ . The record exposure relation is sound and

complete for the subtyping relation 𝐴 ≤ {𝑙 : 𝐵}.

Lemma 5.6 (Record exposure properties for 𝐹𝜇∧
≤≥).
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Γ ⊢ 𝐴 ⇑ 𝐵 (Upper Exposure)

XA-promote
𝛼 ≤ A ∈ Γ Γ ⊢ A ⇑ B

Γ ⊢ 𝛼 ⇑ B

XA-upinv
𝛼 ≥ A ∈ Γ

Γ ⊢ 𝛼 ⇑ 𝛼

XA-up
A is not a type variable

Γ ⊢ A ⇑ A

Γ ⊢ 𝐴 ⇓ 𝐵 (Lower Exposure)

XA-downpromote
𝛼 ≥ A ∈ Γ Γ ⊢ A ⇓ B

Γ ⊢ 𝛼 ⇓ B

XA-downinv
𝛼 ≤ A ∈ Γ

Γ ⊢ 𝛼 ⇓ 𝛼

XA-downward
A is not a type variable

Γ ⊢ A ⇓ A

Γ ⊢ 𝐴⇒𝑙 𝐵 (Record Exposure)

XR-promote
𝛼 ≤ A ∈ Γ Γ ⊢ A ⇒l B

Γ ⊢ 𝛼⇒l B

XR-anda
Γ ⊢ A1 ⇒l B

Γ ⊢ A1 & A2 ⇒l B

XR-andb
Γ ⊢ A2 ⇒l B

Γ ⊢ A1 & A2 ⇒l B

XR-srcd

Γ ⊢ {𝑙 : A} ⇒l A

XR-bot

Γ ⊢ ⊥⇒l ⊥

Fig. 9: The new exposure functions for 𝐹𝜇∧
≤≥ .

1. If Γ ⊢ 𝐴⇒𝑙 𝐵 then Γ ⊢ 𝐴 ≤ {𝑙 : 𝐵}.
2. If Γ ⊢ 𝐴 ≤ {𝑙 : 𝐵} then there exists 𝐶 such that Γ ⊢ 𝐴⇒𝑙 𝐶 and Γ ⊢𝐶 ≤ {𝑙 : 𝐵}.

With these considerations in the algorithmic typing rules, we prove the soundness and
completeness of the algorithmic typing system with respect to the declarative typing rules
defined in Figure 7.

Theorem 5.7 (Soundness of the algorithmic rules for 𝐹𝜇∧
≤≥). If Γ ⊢𝑎 𝑒 : 𝐴 then Γ ⊢ 𝑒 : 𝐴.

Theorem 5.8 (Completeness of the algorithmic rules for 𝐹𝜇∧
≤≥). If Γ ⊢ 𝑒 : 𝐴 then there exists

𝐵 such that Γ ⊢𝑎 𝑒 : 𝐵 and Γ ⊢ 𝐵 ≤ 𝐴.

5.3 Metatheory of 𝐹𝜇∧
≤≥

The addition of lower bounded quantification, bottom types, and intersection types creates
some difficulties in the metatheory of 𝐹𝜇∧

≤≥ . In the following, we describe how to overcome
the difficulties, by adjusting the proof techniques we have used for 𝐹𝜇

≤ .

Unfolding Lemma. As discussed in §4.1, in a type system that simultaneously allows
introducing lower and upper bounded types, the inversion lemma for rule S-vartrans
(Lemma 4.4) is not valid. This is exactly the case for 𝐹

𝜇∧
≤≥ . To resolve this issue, the

unfolding lemmas should only state the subtyping relation between the nominal unfoldings
[𝛼 ↦→𝐶𝛼]𝐴 ≤ [𝛼 ↦→ 𝐷𝛼]𝐵 and remove the one-step unfolding relation 𝐴 ≤ 𝐵 from the
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premise. Therefore, we use the same statement of the generalized unfolding lemma as in
full 𝐹𝜇

≤ (Lemma 4.9), under an extended version of related contexts (Definition 4.7) that
takes lower bounded bindings into account. It turns out that, with only changes of the proof
in cases S-equivall and S-equivalllb, the generalized unfolding lemma can be proved
for 𝐹𝜇∧

≤≥ as well, which results in the following unfolding lemma for 𝐹𝜇∧
≤≥ .

Lemma 5.9 (Unfolding lemma for 𝐹𝜇∧
≤≥). If Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵, then Γ ⊢ [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 ≤

[𝛼 ↦→ 𝜇𝛼. 𝐵] 𝐵.

To prove type soundness, we need to show the structural unfolding lemma. If we check the
typing derivation with structural folding and unfolding illustrated in Figure 4 again in 𝐹

𝜇∧
≤≥ ,

we can see that by inversion on the subtyping relation · ⊢ 𝜇𝛼. 𝐴 ≤ 𝐶′ and · ⊢ 𝐷′ ≤ 𝜇𝛼. 𝐵,
we can no longer guarantee that 𝐶′ and 𝐷′ are recursive types, since they can also be
intersection types. To remedy this, the compatibility relation 𝐴 # 𝐵 is enforced by the
well-formedness of intersection types, so that intersection types can only be formed from
single-field record types, not by recursive types. We can prove the following lemma to
derive a contradiction for the case of intersection types and recover the structural unfolding
lemma as well as type soundness for 𝐹𝜇∧

≤≥ .

Lemma 5.10. For any types 𝐴, 𝐵1 and 𝐵2, it cannot happen that 𝜇𝛼. 𝐴 ≤ 𝐵1 & 𝐵2 or
𝐵1 & 𝐵2 ≤ 𝜇𝛼. 𝐴 in 𝐹

𝜇∧
≤≥ .

Lemma 5.11 (Structural unfolding lemma for 𝐹𝜇∧
≤≥). If Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼.𝐶 ≤ 𝜇𝛼.𝐷 ≤ 𝜇𝛼. 𝐵

then Γ ⊢ [𝛼 ↦→ 𝜇𝛼.𝐶] 𝐴 ≤ [𝛼 ↦→ 𝜇𝛼.𝐷] 𝐵.

Decidability. The interaction between bottom types and rule S-equivall breaks the
measure-based decidability proof in §4.3. The bottom type in 𝐹

𝜇∧
≤≥ brings a new form

of equivalent types: when 𝛼 ≤ ⊥ ∈ Γ, one can derive that Γ ⊢ 𝛼 ≤ ⊥ and Γ ⊢ ⊥ ≤ 𝛼, as
observed by Pierce (1997). Simply extending the measure function with sizeΨ (⊥) = 1 will
not work. For type variables, the measure function will recursively look up its bound in
the context, and add one to the measure of its bound, making a variable equivalent to
⊥ to have a larger measure than ⊥. Therefore, replacing two equivalent types into the
abstracted type body may not produce the same measures. We can construct derivations
of rule S-equivall that have a larger measure in the premise than that of the conclusion,
which makes the decidability proof fail with the current measure. For example, consider
the following subtyping derivation:

𝛼 ≤ ⊥, 𝛽 ≤ 𝛼 ⊢ 𝛼 ≤ 𝛽 𝛼 ≤ ⊥, 𝛽 ≤ 𝛼 ⊢ 𝛽 ≤ 𝛼 𝛼 ≤ ⊥, 𝛽 ≤ 𝛼, 𝛾 ≤ 𝛽 ⊢ 𝐴 ≤ 𝐵

𝛼 ≤ ⊥, 𝛽 ≤ 𝛼 ⊢ ∀(𝛾 ≤ 𝛼). 𝐴 ≤ ∀(𝛾 ≤ 𝛽). 𝐵

If we follow the measure function defined in §4.3, the measure for the third premise is:

size𝛼 ↦→1, 𝛽 ↦→2, 𝛾 ↦→3 (𝐴) + size𝛼 ↦→1, 𝛽 ↦→2, 𝛾 ↦→3 (𝐵)

while the measure for the goal is

size𝛼 ↦→1, 𝛽 ↦→2 (∀(𝛾 ≤ 𝛼). 𝐴) + size𝛼 ↦→1, 𝛽 ↦→2 (∀(𝛾 ≤ 𝛽). 𝐵)
↩→ size𝛼 ↦→1, 𝛽 ↦→2, 𝛾 ↦→2 (𝐴) + size𝛼 ↦→1, 𝛽 ↦→2, 𝛾 ↦→3 (𝐵)
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which can be less than the measure of the premise since 𝛾 is assigned a smaller measure in
the goal. A similar issue arises when a variable is lower bounded by ⊤, making it equivalent
to top types but with a different measure.

This issue can be resolved by replacing all the types whose supertype is ⊥ with ⊥, and
all the types whose subtype is ⊤ with ⊤ before computing the measure. That way, the
subtyping relation 𝛼 ≤ ⊥, 𝛽 ≤ 𝛼 ⊢ ∀(𝛾 ≤ 𝛼). 𝐴 ≤ ∀(𝛾 ≤ 𝛽). 𝐵 becomes

𝛼 ≤ ⊥, 𝛽 ≤ ⊥ ⊢ ∀(𝛾 ≤ ⊥). 𝐴 ≤ ∀(𝛾 ≤ ⊥). 𝐵

and the measure works again. This idea can be implemented by modifying the measure
function to identify upper/lower bounded variables that are equivalent to bottom/top types,
as can be seen in Figure 10. The new bindings 𝛼 ↦→ ⊥ and 𝛼 ↦→ ⊤ are used to store the
measure of variables or indicate them as upper bounded by ⊥ or lower bounded by ⊤.
Figure 10 shows the measures needed for the decidability of 𝐹𝜇∧

≤≥ . The primary measure
function is sizeΨ (𝐴). The main changes are in the cases for bounded quantification where we
now use isTop and isBot functions to detect whether the bounds are, respectively, equivalent
to top or bottom. The isTop and isBot functions use the information in the measure context
Ψ to check whether the bound type 𝐴 is equivalent to ⊤ or ⊥. If so, when the variable
bounded by 𝐴 is looked up in the context, it will have a measure of 1. The example above
will now be resolved by the new measure function as follows:

size𝛼 ↦→⊥, 𝛽 ↦→⊥ (∀(𝛾 ≤ 𝛼). 𝐴) + size𝛼 ↦→⊥, 𝛽 ↦→⊥ (∀(𝛾 ≤ 𝛽). 𝐵)
↩→ size𝛼 ↦→⊥, 𝛽 ↦→⊥, 𝛾 ↦→⊥ (𝐴) + size𝛼 ↦→⊥, 𝛽 ↦→⊥, 𝛾 ↦→⊥ (𝐵)
since isBot𝛼 ↦→⊥, 𝛽 ↦→⊥ (𝛼) = true and isBot𝛼 ↦→⊥, 𝛽 ↦→⊥ (𝛽) = true

In this way, we retain the important property that equivalent types have the same measure.

Lemma 5.12. If Γ ⊢ 𝐴 ≤ 𝐵 and Γ ⊢ 𝐵 ≤ 𝐴 then size𝑒𝑣𝑎𝑙 (Γ) (𝐴) = size𝑒𝑣𝑎𝑙 (Γ) (𝐵) in 𝐹
𝜇∧
≤≥ .

Note that in the proof of Lemma 5.12, in the case of intersection types, we make use of
the compatibility relation 𝐴 # 𝐵 to ensure that any equivalent types have the same measure.
Without the compatibility restriction, the labels may be duplicated within the intersection
type, which will lead to a different measure for equivalent types. By limiting compatible
types to be single-field records and their intersections only, we also rule out the occurrence
of ⊤ in intersection types, which will cause the same problem. With the new measure
function, we can prove the decidability of subtyping and typing in 𝐹

𝜇∧
≤≥ .

Theorem 5.13 (Decidability of 𝐹𝜇∧
≤≥ subtyping). Γ ⊢ 𝐴 ≤ 𝐵 is decidable in 𝐹

𝜇∧
≤≥ .

Theorem 5.14 (Decidability of 𝐹𝜇∧
≤≥ typing). Γ ⊢ 𝑒 : 𝐴 is decidable in 𝐹

𝜇∧
≤≥ .

Conservativity. The proof of conservativity for 𝐹𝜇∧
≤≥ follows the same pattern as the proof

for 𝐹𝜇
≤ . To prove conservativity of typing, we need the help of the algorithmic typing rules

to obtain the minimum type of an 𝐹≤ term. We have defined the algorithmic typing rules
for 𝐹

𝜇∧
≤≥ and proved the completeness of the algorithmic typing rules in §5.2. With the

algorithmic typing rules, conservativity for 𝐹𝜇∧
≤≥ is straightforward.

Theorem 5.15 (Conservativity for 𝐹𝜇∧
≤≥). If Γ, 𝐴 and 𝑒 are well-formed in 𝐹≤ , namely (1)

⊢𝐹 Γ (2) Γ ⊢𝐹 𝐴 and (3) ⊢𝐹 𝑒, then Γ ⊢𝐹 𝑒 : 𝐴 if and only if Γ ⊢ 𝑒 : 𝐴.
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Ψ := · | Ψ, 𝛼 ↦→ 𝑖 | Ψ, 𝛼 ↦→ ⊥ | Ψ, 𝛼 ↦→ ⊤

sizeΨ (nat) = 1
sizeΨ (⊤) = 1
sizeΨ (⊥) = 1
sizeΨ (𝐴→ 𝐵) = 1 + sizeΨ (𝐴) + sizeΨ (𝐵)
sizeΨ (𝐴𝛼) = 1 + sizeΨ (𝐴)

sizeΨ (𝛼) = 1 +


𝑖 𝛼 ↦→ 𝑖 ∈ Ψ

0 𝛼 ↦→ ⊤ ∈ Ψ or 𝛼 ↦→ ⊥ ∈ Ψ

1 otherwise

sizeΨ (∀(𝛼 ≤ 𝐴). 𝐵) = 1 +
{

1 + sizeΨ,𝛼 ↦→⊥ (𝐵) isBotΨ (𝐴)
sizeΨ (𝐴) + sizeΨ,𝛼 ↦→sizeΨ (𝐴) (𝐵) otherwise

sizeΨ (∀(𝛼 ≥ 𝐴). 𝐵) = 1 +
{

1 + sizeΨ,𝛼 ↦→⊤ (𝐵) isTopΨ (𝐴)
sizeΨ (𝐴) + sizeΨ,𝛼 ↦→sizeΨ (𝐴) (𝐵) otherwise

sizeΨ (𝜇𝛼. 𝐴) = let 𝑖 := sizeΨ,𝛼 ↦→1 (𝐴) in 1 + sizeΨ,𝛼 ↦→𝑖 (𝐴)
sizeΨ (𝐴 & 𝐵) = 1 + sizeΨ (𝐴) + sizeΨ (𝐵)
sizeΨ ({𝑙 : 𝐴}) = 1 + sizeΨ (𝐴)

isBotΨ (⊥) = true
isBotΨ,𝛼 ↦→⊥ (𝛼) = true
isBotΨ,𝛽 ↦→ (𝛼) = isBotΨ (𝛼) if 𝛼 ≠ 𝛽

otherwise isBotΨ (𝐴) = false

isTopΨ (⊤) = true
isTopΨ,𝛼 ↦→⊤ (𝛼) = true
isTopΨ,𝛽 ↦→ (𝛼) = isTopΨ (𝛼) if 𝛼 ≠ 𝛽

otherwise isTopΨ (𝐴) = false

Fig. 10: The measures for the decidability of 𝐹𝜇∧
≤≥ .

6 Coq Proofs

We develop and verify our formalization in Coq 8.13 (The Coq Development Team,
2021), and use Metalib to formalize variables and binders using the locally nameless
representation (Aydemir et al., 2008).

The Coq formalization is available online4. The directory “kernel fsub main” includes
all definitions and proofs for kernel 𝐹

𝜇
≤ described in Section 3, while the directory

“full fsub main” includes the full 𝐹
𝜇
≤ variant. Definition and proofs for 𝐹

𝜇∧
≤≥ described

in Section 5 are in the “kernel fsub ext” directory. Each directory can be checked
independently, and the dependency of the proofs follows a sequential order in each directory.

4 https://github.com/juda/Recursive-Subtyping-for-All/tree/main/JFP

https://github.com/plclub/metalib
https://github.com/juda/Recursive-Subtyping-for-All/tree/main/JFP
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Table 2: Paper-to-proofs correspondence guide for kernel 𝐹𝜇
≤ (in kernel fsub main/ direc-

tory).

Definition File Name in Coq Notation
Types (Figure 1) Rules.v typ
Expressions (Figure 1) Rules.v exp
Values (Figure 1) Rules.v value
Contexts (Figure 1) Rules.v env
Well-formed Type (Figure 2) Rules.v WF E A Γ ⊢ 𝐴
Subtyping (Figure 2) Rules.v sub E A B Γ ⊢ 𝐴 ≤ 𝐵

Typing (Figure 3) Rules.v typing E e A Γ ⊢ 𝑒 : 𝐴
Reduction (Figure 3) Rules.v step e1 e2 𝑒1 ↩→ 𝑒2
Upper Exposure (Figure 5) AlgoTyping.v exposure E A B Γ ⊢ 𝐴 ⇑ 𝐵

Lower Exposure (Figure 5) AlgoTyping.v exposure2 E B A Γ ⊢ 𝐴 ⇓ 𝐵

Algorithmic Typing (Figure 5) AlgoTyping.v typing E e A Γ ⊢𝑎 𝑒 : 𝐴
Measure (§4.3) Decidability.v bindings rec G E n A sizeΨ (𝐴)
Context Measure (§4.3) Decidability.v mk benv E eval(Γ)

Table 3: Paper-to-proofs correspondence guide for full 𝐹𝜇
≤ (in full fsub main/ directory).

Definitions that are the same as kernel 𝐹𝜇
≤ are omitted.

Definition File Name in Coq Notation
Subtyping (§3.2) Rules.v sub E A B Γ ⊢ 𝐴 ≤ 𝐵

Related contexts
(Definition 4.7)

UnfoldingEquiv.v sub env ext E X C D E1 E2 Γ � Γ𝜇

6.1 Definitions

All three systems share a similar structure for definitions: the files Rules.v contains the
core definitions for the calculus, and AlgoTyping.v contains the algorithmic rules for typing.
Tables 2, 3 and 4 shows the correspondence between the paper definitions and the Coq for-
malization. The formalization mainly follows the definitions in the paper except for some
technical details. One difference to note is that throughout the paper, we use only substitu-
tion to represent unfolding of a recursive type, application of universal quantification and
function abstraction. In the Coq proof, due to the use of the locally nameless representation,
we also make use of the opening operation on pre-terms (Aydemir et al., 2008). We also
merge several rules for exposure and typing record expressions in the paper, for readability.

6.2 Lemmas and Theorems

Tables 5, 6 and 7 show the correspondence of lemmas and theorems between the paper
and the Coq formalization. We provide the file location and theorem name in Coq for each
lemma and theorem in the paper, and include a brief description for each of them.
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Table 4: Paper-to-proofs correspondence guide for 𝐹𝜇∧
≤≥ (in kernel fsub ext/ directory).

Definition File Name in Coq Notation
Types (§5.1) Rules.v typ
Expressions (§5.1) Rules.v exp
Values (§5.1) Rules.v value
Contexts (§5.1) Rules.v env
Compatible types (Figure 6) Rules.v Compatible A B 𝐴 # 𝐵

Well-formed Type (Figure 6) Rules.v WF E A Γ ⊢ 𝐴
Subtyping (Figure 6) Rules.v sub E A B Γ ⊢ 𝐴 ≤ 𝐵

Typing (Figure 7) Rules.v typing E e A Γ ⊢ 𝑒 : 𝐴
Reduction (Figure 7) Rules.v step e1 e2 𝑒1 ↩→ 𝑒2
Algorithmic Typing (Figure 8) AlgoTyping.v typing E e A Γ ⊢𝑎 𝑒 : 𝐴
Upper Exposure (Figure 9) AlgoTyping.v exposure E A B Γ ⊢ 𝐴 ⇑ 𝐵

Lower Exposure (Figure 9) AlgoTyping.v exposure2 E B A Γ ⊢ 𝐴 ⇓ 𝐵

Record Exposure (Figure 9) AlgoTyping.v exposure i E A l B Γ ⊢ 𝐴⇒𝑙 𝐵

Measure (Figure 10) Decidability.v bindings rec G E n A sizeΨ (𝐴)

7 Related Work

Throughout the paper, we have already reviewed some of the closest related work in detail.
In this section, we discuss other related work.

7.1 Bounded Quantification, Recursive Types and Object Encodings

Bounded quantification was first introduced by Cardelli and Wegner (1985) in the language
Fun, where their kernel Fun calculus corresponds to the kernel version of 𝐹≤ . The full
variant of 𝐹≤ was introduced by Curien and Ghelli (1992) and Cardelli et al. (1994),
where the subtyping for bounds is contravariant. Although full 𝐹≤ is powerful, subtyping
proved to be undecidable (Pierce, 1994). As discussed in §1 there are several attempts to
add recursive types to 𝐹≤ , such as the work by Ghelli (1993), Colazzo and Ghelli (2005)
and Jeffrey (2001). Unfortunately, as Table 1 shows, such combinations are not painless,
and even the successful combinations require significant changes for the subtyping rules.
Ghelli (1993) illustrates how the combination of equi-recursive subtyping and full 𝐹≤
significantly alters the expressiveness of the subtyping relation. Specifically, he shows that
there exist such subtyping relations 𝐴 ≰ 𝐴′ that do not hold in full 𝐹≤ , but are derivable
when equi-recursive subtyping is added, by finding an intermediate type 𝐵 which contains
equi-recursive types such that 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴′. In Colazzo and Ghelli (2005)’s work, there
is no independent universal type, and the shape of recursive types is either 𝜇𝛼.∀(𝑥 ≤ 𝐴). 𝐵
or 𝜇𝛼. 𝐴→ 𝐵. The recursive variables and universal variables are distinct, resulting in
changes in environments and subtyping rules. For example, the subtyping environment is
defined as Π := · | Π, (𝑥, 𝑦) ≤ (𝐴, 𝐵) | Π, (𝛼 = 𝐴, 𝛽 = 𝐵), and the rule S-vartrans rule of
𝐹≤ is changed to:

(𝑥, 𝑦) ≤ (𝐴′, 𝐵′) ∈ Π ∀𝛼′, 𝐵 ≠ 𝛼′ 𝐵 ≠⊤ 𝐵 ≠ 𝑦 Π ⊢ 𝐴′ ≤ 𝐵

Π ⊢ 𝑥 ≤ 𝐵
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Table 5: Descriptions for the proof scripts for kernel 𝐹𝜇
≤ (in kernel fsub main/ directory).

Theorems Description Files Name in Coq
Lemma 3.1 Regularity of subtyping Reflexivity.v sub regular
Lemma 3.2 Narrowing Transitivity.v sub narrowing
Theorem 3.3 Reflexivity Reflexivity.v Reflexivity
Theorem 3.4 Transitivity Transitivity.v sub transitivity
Lemma 3.5 Unfolding lemma Unfolding.v unfolding lemma
Lemma 3.6 Structural unfolding Preservation.v structural unfolding

lemma general
Theorem 3.7 Preservation Preservation.v preservation
Theorem 3.8 Progress Progress.v progress
Theorem 3.9 Algo-typing soundness AlgoTyping.v typing algo sound
Theorem 3.10 Algo-typing completeness AlgoTyping.v minimum typing
Lemma 4.2 Generalized unfolding

lemma for kernel 𝐹
𝜇
≤ in

Zhou et al. (2023)

Unfolding.v sub generalize
intensive

Lemma 4.3 Substitution inversion Unfolding.v subst reverse equiv
Lemma 4.10 Subtyping conservativity Conservativity.v sub conserv
Lemma 4.11 Antisymmetry of kernel 𝐹≤

subtyping
Conservativity.v sub antisym

Lemma 4.12 Algo-typing conservativity Conservativity.v typing algo conserv
Theorem 4.13 Typing conservativity Conservativity.v typing conserv
Theorem 4.15 Decidability of subtyping Decidability.v decidability
Theorem 4.16 Decidability of typing DecidabilityTy.v decidable typing
Lemma 4.17 Equivalent measure Decidability.v equiv measure

The algorithm proposed by Jeffrey (2001) is also complex, and requires major changes.
Both recursive variables and the subtyping algorithm are labeled with polarity modes,
and the implementation of 𝛼-conversion is not discussed. In contrast, our subtyping rules
do not change the contexts, the types are not restricted, and most importantly, we do
not have to change the rules in the original 𝐹≤ . This has the benefit that we can largely
reuse the existing metatheory of the original 𝐹≤ , and it also enables our conservativity
result. While it is plausible that Jeffrey (2001)’s or Colazzo and Ghelli (2005)’s work for
the kernel 𝐹≤ extensions with recursive types are conservative, this has not been proved.
Furthermore, such proof is likely to be non-trivial because of the major changes introduced
by equi-recursive subtyping.

There are many other extensions to 𝐹≤ . Bounded existentials are also studied by Cardelli
and Wegner (1985). Existential types can be encoded by universal types, thus we can obtain a
form of bounded existentials for free in 𝐹≤ (Cardelli and Wegner, 1985). Another important
extension is F-bounded quantification, firstly proposed by Canning et al. (1989), then studied
by Baldan et al. (1999) in terms of the basic theory. In F-bounded quantification, the bounded
variables are allowed to appear in the bound, denoted as ∀(𝛼 ≤ 𝐹 [𝛼]). 𝐵. We can encode
polymorphic binary methods (Bruce et al., 1995) and methods that have recursive types
in their signatures with F-bounded quantification. However, as we discussed in §2.2, for
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Table 6: Descriptions for the proof scripts for full 𝐹𝜇
≤ (in full fsub main/ directory).

Theorems Description Files Name in Coq
Lemma 3.1 Regularity of subtyping Reflexivity.v sub regular
Lemma 3.2 Narrowing Transitivity.v sub narrowing
Theorem 3.3 Reflexivity Reflexivity.v Reflexivity
Theorem 3.4 Transitivity Transitivity.v sub transitivity
Lemma 3.5 Unfolding lemma UnfoldingEquiv.v unfolding lemma
Lemma 3.6 Structural unfolding Preservation.v structural unfolding

lemma general
Theorem 3.7 Preservation Preservation.v preservation
Theorem 3.8 Progress Progress.v progress
Theorem 3.9 Algo-typing soundness AlgoTyping.v typing algo sound
Theorem 3.10 Minimum typing AlgoTyping.v minimum typing
Lemma 4.8 Related context inversion UnfoldingEquiv.v sub env ext sem
Lemma 4.9 Generalized unfolding

lemma for full 𝐹𝜇
≤

UnfoldingEquiv.v sub generalize
intensive

Lemma 4.10 Subtyping conservativity Conservativity.v sub conserv
Lemma 4.12 Algorithmic typing con-

servativity
Conservativity.v typing algo conserv

Theorem 4.13 Typing conservativity Conservativity.v typing conserv

subtyping statements to satisfy the bound 𝛼 ≤ 𝐹 [𝛼], they must be interpreted using equi-
recursive subtyping, as F-bounds are normally records, and an iso-recursive type cannot
be the subtype of a record type. F-bounded quantification is appealing because it can even
deal with binary methods, where recursive types appear in negative positions. For example,
with F-bounded quantification we can model bounds such as 𝛼 ≤ {𝑥 : Int, eq : 𝛼→ Bool},
and still have the expected subtyping relations.

Whereas we show that with the structural unfolding rule we can model positive
cases of F-bounded quantification (such as translate) in 𝐹

𝜇
≤ , we can only model a

restricted form of negative F-bounded quantification. For instance in 𝐹
𝜇
≤ we can have

the bound 𝛼 ≤ 𝜇P. {𝑥 : Int, eq : P→ Bool} and we can instantiate 𝛼 with 𝑃 (where
𝑃 = 𝜇P. {𝑥 : Int, eq : P→ Bool}). However, we would not be able to instantiate 𝛼 with
some types that have extra fields, such as 𝜇P’. {𝑥 : Int, 𝑦 : Int, eq : P’→ Bool}. In contrast,
F-bounded quantification allows such forms of instantiation. Nevertheless, given the overlap
between some of the applications of iso-recursive types in 𝐹

𝜇
≤ and F-bounded quantifica-

tion, we believe that it is worthwhile to investigate whether F-bounded quantification can
be avoided to deal with general binary methods.

F-bounded quantification offers an elegant method for encoding objects that possess
binary methods. When not seeking to fully encode binary methods, other object encod-
ings are also available. Recursive records can encode objects (Bruce et al., 1999; Cook
et al., 1989; Canning et al., 1989). Alternatively, existential types can also be used to
encode objects (Pierce and Turner, 1994), or they can be employed together with recursive
types (Bruce, 1994). Pierce and Turner (1994)’s object encoding using existential types
is notable in that it requires only 𝐹≤ , and does not employ recursive types. The ORBE
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Table 7: Descriptions for the proof scripts for 𝐹𝜇∧
≤≥ (in kernel fsub ext/ directory).

Theorems Description Files Name in Coq
Lemma 5.1 Regularity of subtyping Reflexivity.v sub regular
Theorem 5.2 Reflexivity Reflexivity.v Reflexivity
Theorem 5.3 Transitivity Transitivity.v sub transitivity
Theorem 5.4 Preservation Preservation.v preservation
Theorem 5.5 Progress Progress.v progress
Lemma 5.6 Record exposure AlgoTyping.v exposure i sound

exposure i ex
Theorem 5.7 Algo-typing soundness AlgoTyping.v typing algo sound
Theorem 5.8 Algo-typing completeness AlgoTyping.v minimum typing
Lemma 5.9 Unfolding lemma UnfoldingEquiv.v unfolding lemma
Lemma 5.11 Structural Unfolding

lemma
Preservation.v structural unfolding

lemma general
Lemma 5.12 Equivalent measure Decidability.v equiv measure
Theorem 5.13 Decidability of subtyping Decidability.v decidability
Theorem 5.14 Decidability of typing DecidabilityTy.v decidable typing
Theorem 5.15 Conservativity Conservativity.v typing conserv

encoding (Abadi et al., 1996), as we discussed in §2.2, consists of recursive types, bounded
existential quantification, records, and the structural unfolding rule. As Bruce et al. (1999)
observe, the ORBE encoding requires full 𝐹≤ for the bounded quantification subtyping
rule. When we try to compare two bounds, the type variable will be substituted with the
existential types, which may result in bounds that are not equivalent. The overview paper by
Bruce et al. (1999) makes a detailed comparison among different object encodings. Our 𝐹𝜇

≤
calculus could act as a target for all those existing object encodings discussed above. To our
best knowledge, a complete formalization of 𝐹≤ with recursive types, featuring desirable
properties such as type soundness and conservativity, was not available at the time. Our
work contributes to the validation of these encodings by offering a complete formalization
of 𝐹≤ with recursive types, along with several desirable properties.

7.2 Dependent Object Types

The renewed interest in languages featuring bounded quantification and recursive types has
been reignited recently within the research community, following the introduction of the
dependent object types (DOT) calculus (Rompf and Amin, 2016). DOT is now the founda-
tion of Scala 3 (EPFL, 2021). The research on DOT has been intimately related to 𝐹≤ . For
instance, Amin and Rompf (2017) explain many of the features of DOT by incrementally
extending 𝐹≤ . DOT implements a generalized form of bounded quantification along with
recursive types. This generalized form encompasses both upper and lower bounded quan-
tification. Furthermore, DOT facilitates path selection that simultaneously supports upper
and lower bounds. Additionally, DOT incorporates intersection types (Pottinger, 1980;
Coppo et al., 1981; Barbanera et al., 1995) for typing objects. A distinctive characteristic
of DOT is its use of path-dependent types (Amin et al., 2014). With path-dependent types,
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the treatment of recursive types is different from our calculus 𝐹𝜇∧
≤≥ . In DOT, recursive types

are introduced using recursive self types: {𝑧⇒𝑇 𝑧}. The variable 𝑧 is a term variable. Thus
a recursive self type provides a limited form of dependent types, modeling a dependently-
typed fixpoint operator. In contrast, in 𝐹

𝜇∧
≤≥ , the variable 𝛼 of a recursive type 𝜇𝛼. 𝐴 is a

type variable. In 𝐹
𝜇∧
≤≥ , the type of objects is similar to that in DOT: we employ intersections

of the types of all the fields, and we require that the labels are disjoint. If the object uses
recursive types, then we use a fold around the term.

Previous attempts to prove the undecidability of DOT reduced the problem to the unde-
cidability problem in 𝐹≤ , relying on a translation from 𝐹≤ to types in DOT (Rompf and
Amin, 2016). However, as Hu and Lhoták (2020) later observed, the translation is not
conservative. For example, in 𝐹≤ , ⊤→⊤ ≤ ∀(𝛼 ≤ ⊤).⊤ is not a valid subtyping statement
because function types and universal types are not comparable. However, after translating
them into DOT, the statement becomes ∀(𝛼 : ⊤). ⊤ ≤ ∀(𝛼 : {⊤..⊤}). ⊤, in which {⊤..⊤}
indicates that 𝛼 is both upper and lower bounded by ⊤. This statement is valid in DOT
variants that allow full or equivalent subtyping for bounded quantification, which breaks
the conservativity from 𝐹≤ to DOT. Nevertheless, Hu and Lhoták (2020) showed that the
undecidability of DOT can be reduced to an undecidable fragment 𝐹−

≤ of full 𝐹≤ , that
excludes the function types, and proved that DOT is undecidable.

There are two notable decidable variants of DOT: the strong kernel 𝐷<: calculus from Hu
and Lhoták (2020) and the Wyvern language by Mackay et al. (2020). These systems share
features akin to 𝐹

𝜇∧
≤≥ , making comparisons worthwhile. As variants of DOT, both support

path-dependent types. The decidable variant by Hu and Lhoták (2020) selects specific
features from DOT, including upper and lower bounds for path selection, and an equivalent
subtyping quantifier for 𝐹≤ , but it lacks recursive and intersection types. To handle the
complexity of path types in proof of decidability, they define an algorithmic version of the
subtyping rules, called stare-at subtyping, prove its equivalence to the declarative rules, and
use a simple measure to show that the algorithmic rules terminate. The system developed
by Mackay et al. (2020) shares several similarities with 𝐹

𝜇∧
≤≥ , including the enforcement of

comparable constraints on bounds and the integration of a restricted version of intersection
types for typing objects. However, it distinguishes itself by using equi-recursive types for
recursion.

Reflecting on the complexity inherent in full intersection types, Mackay et al. (2020)
also adopt a restricted form of these types to refine recursive objects. To ensure decidabil-
ity, their methodology employs a kernel variant of 𝐹≤ . As for the proof of decidability,
Mackay et al. (2020) define type graphs, a graphical representation of types and type dec-
larations, along with the dependency information between them. They provide a general
algorithm for checking type graph subtyping, and show that in the restricted system, all
types are homomorphic to type graphs that obey the material/shape separation property,
which ensures that the subtyping algorithm terminates. In contrast, the decidability proof
for 𝐹𝜇∧

≤≥ does not rely on alternative subtyping rules or type representations, and is solely
based on measures. Both decidable systems in DOT incorporate top and bottom types and
have been demonstrated to be reflexive, similarly to 𝐹

𝜇∧
≤≥ . However, one of the limitations

for DOT is that transitivity elimination is not possible (Rompf and Amin, 2016), and even
the two decidable fragments of DOT lack transitivity (Hu and Lhoták, 2020; Mackay et al.,
2020). In contrast, in 𝐹

𝜇∧
≤≥ transitivity can be derived from the subtyping rules.
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Table 8: Comparison 𝐹
𝜇∧
≤≥ with DOT and its variants.

𝐹
𝜇∧
≤≥ Rompf and

Amin
(2016)

Hu and
Lhoták
(2020)

Mackay
et al. (2020)

Path-dependent Types × ✓ ✓ ✓

Bounded Quantification 𝛼 ≤ 𝐴 or
𝛼 ≥ 𝐴

𝐴 ≤ 𝛼 ≤ 𝐵 𝐴 ≤ 𝛼 ≤ 𝐵 𝛼 ≤ 𝐴 or
𝛼 ≥ 𝐴

Recursive Types iso equi × equi
Intersection Types limited ✓ × limited

Quantifier Subtyping equiv 𝐹≤ full 𝐹≤ equiv 𝐹≤ kernel 𝐹≤
Conservativity ✓ × × ×

Reflexivity ✓ ✓ ✓ ✓

Transitivity ✓ built-in × ×
Decidability measures × algo rules type graphs

While 𝐹
𝜇∧
≤≥ does not have all the features of DOT, our results can potentially help in

research in that area, where the decidable fragments of DOT lack important properties such
as transitivity. In addition 𝐹

𝜇∧
≤≥ preserves the conservativity over kernel 𝐹≤ , while DOT

does not. Table 8 presents a comparative analysis of the four calculi.

7.3 Algebraic Datatypes and Subtyping

Algebraic datatypes are a fundamental feature in modern functional programming lan-
guages, such as Haskell (Haskell Development Team, 1990) and OCaml (INRIA, 1987).
However, such languages do not support subtyping between datatypes. Hosoya et al. (1998)
discussed the interaction between mutually recursive datatypes and subtyping. They pre-
sented two variants of 𝐹≤ extending 𝐹≤ with user-defined datatype declarations. The first
variant has user-defined subtyping declarations between datatypes, and can be viewed as
having a form of nominal subtyping. The second variant allows structural subtyping among
the datatypes.

One advantage of employing user-defined datatypes is that it is simple to deal with
formally, and that it allows mutually recursive datatype definitions easily. However, they do
not support conventional recursive types of the form 𝜇𝛼. 𝐴 as we do in 𝐹

𝜇
≤ . Moreover, they

do not consider lower bounded quantification which, as argued in §2.2, seems to be quite
useful in a system targeting algebraic datatypes.

More recently, Rossberg (2023) proposed another calculus with a similar idea of using
declared subtyping for recursive types, aiming at providing better and more efficient support
for mutually recursive datatypes in type-safe low-level languages like Wasm. In their work,
recursive types take the form 𝜇⟨𝛼1 ≤ 𝐴1, 𝛼2 ≤ 𝐴2⟩. 𝐵, where the declared bound 𝐴2 can
refer to 𝛼1 so that two mutually recursive types can be defined at once. This avoids the
polynomial explosion of encoding mutual recursion using single recursion à la Bekić’s
Lemma (Bekić, 2005). However, to deal with type bounds in the 𝜇-operator they need to
employ higher-order subtyping (Pierce and Steffen, 1997).
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There has been some work integrating ML datatypes and OO classes (Bourdoncle
and Merz, 1997; Millstein et al., 2004). In the implementation of hierarchical extensi-
ble datatypes, methods are simulated via functions with dynamic dispatch. Those works
are focused on the design of intermediate languages that have complex constructs such as
classes or datatypes. In contrast, we develop foundational calculi, where more complex
constructs can be encoded. Finally, Poll (1998) investigated the categorical semantics of
datatypes with subtyping and a limited form of inheritance on datatypes, improving our
understanding on the relation between categorical datatypes and object types.

Oliveira (2009) showed encodings of algebraic datatypes with subtyping assuming a
variant of 𝐹≤ extended with records, recursive types and higher kinds. He showed that
adding subtyping to datatypes allows for solving the Expression Problem (Wadler, 1998).
However, as we mentioned in §2.2, he did not formalize the 𝐹≤ extension, although he
showed a translation of the encoding into Scala. Moreover, his encoding is more complex
than ours because he employs upper bounded quantification with higher kinds. In §2.2, we
showed that first-order lower bounded quantification in 𝐹

𝜇∧
≤≥ , together with the structural

folding rule enables such encodings. As for encodings of objects, our work is helpful to
further validate such encodings formally.

8 Conclusion

Recursive types and bounded quantification play a significant role in various programming
languages. While these features have been extensively studied individually, their combined
interaction has remained a challenging problem for a long time. Our 𝐹𝜇

≤ calculus demon-
strates a method for integrating iso-recursive types with two variations of 𝐹≤ . We achieve a
transitive and decidable subtyping relation for the kernel variant, and both calculi maintain
conservativity over 𝐹≤ and are type sound. 𝐹𝜇

≤ and 𝐹
𝜇∧
≤≥ could provide a theoretical basis

for object encodings and subtyping in algebraic data types. In particular, the full 𝐹𝜇
≤ we

have studied in this paper provides a foundation for the ORBE object encoding (Abadi et al.,
1996). Recently, there has been a renewed interest in recursive types and bounded quantifi-
cation, sparked by the DOT calculus. Our research helps in identifying calculi that include
most features found in DOT, while preserving properties such as subtyping’s decidability
and transitivity, or even conservativity over 𝐹≤ . Exploring extensions of 𝐹𝜇

≤ to include more
features from DOT constitutes an interesting direction for future research.
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