QuickSub: Efficient Iso-Recursive Subtyping

Bruno C. d. S. Oliveira (joint work with Litao Zhou)

Canberra WG2.1 Meeting

Motivation for QuickSub

v

Recursive types are essential in many programming languages.
Two main approaches: Equi-recursive and Iso-recursive types.
In languages with subtyping we need to also consider
recursive subtyping.

Efficient algorithms for iso-recursive subtyping remain
understudied.

Equi-recursive Types

» Treat recursive types and their unfoldings as identical.

» Example: poa.a = a = (pa.a = o) = (pa.a — a)
» Advantages:
» Convenient.
> No need for explicit fold/unfold operations.
» Disadvantages:
> Requires coinductive reasoning, which is costly (in terms of
performance)?.
» Metatheory complications: F.. with recursive types, ML
Modules.
» Difficult to extend with more advanced type system features.

! Andreas Rossberg. Mutually Iso-Recursive Subtyping. OOPSLA 2023

Iso-recursive Types

» Treat recursive types and their unfoldings as different.

» Example: po.a — a and (po.ao — o) — v are distinct.
» Advantages:

» Easier to scale to more advanced features.

» Simpler metatheory.

» Lower computational complexity.
» Disadvantages:

» Less convenience.

» Operational semantics complicated by fold/unfold.

Recursive Subtyping: 3 Approaches

3 Approaches with different expressive power:
» (Inductive) Amber-style iso-recursive subtyping.
» (Coinductive) Complete iso-recursive subtyping.
» (Coinductive) Equi-recursive subtyping.

Expressive power comparison:
Amber < Complete < Equi

But equi-recursive subtyping can be expressed as Amber +
equi-recursive equivalence?:

A<.B23C G . A=GANG <, GAGC =B.

2Litao Zhou, Qianyong Wan, and Bruno C. d. S. Oliveira:: OOPSLA 2024

Why QuickSub?

» An efficient algorithm for Amber iso-recursive subtyping is
missing.

Subtyping Amber-style Recursive Types

> Efficient subtyping for iso-recursive types is challenging.

> We assume standard subtyping rules for other constructs:

B < A; A < B
AT nat < nat Al > A< B = B

> How to determine if one recursive type is a subtype of another
for iso-recursive subtyping?

> We expect that recursive type unrolling preserve subtyping:

If pa.A < pa.B then A [a — paAl < B [a = paB.

Example: Positive Recursive Subtyping

> ua. T — a < pa. nat — «

» The left type can be regarded as a function that consumes
infinite values of any type.

» The right type consumes infinite nat values.

v

The left type is more general than the right type.

> Positive subtyping is easy: just compare the bodies in the
usual way!

Example: Negative Recursive Subtyping

| 2
>

| 4

po. o —nat L po. o« = T

The left type expects an input of a specific type producing nat
values.

The right type expects an input of a specific type producing
any values.

The subtyping statement does not hold, since unrollings do
not preserve subtyping.

((po. o — nat) = nat) w nat £ ((pov. a > T) = T) = T

Negative subtyping holds for reflexivity (example
pe. o — nat < po. oo — nat), and little else.

Nested Recursive Subtyping

» Example: pufS. T — (pa. a — B) < pf. nat — (pa. a — B)?
» Question: Should these be subtypes?

Nested Recursive Subtyping

v

Example: u8.T — (pa.ao — B) £ pfB.nat — (pa.a — B)
The variable 5 appears to be in a positive position.

vy

However, due to the variable o appearing negatively, the types
are not related by subtyping.

v

Complex interactions between recursive variables.

> We can see that unrollings do not preserve subtyping!
pB. T = (pa. o=) = B)—p

£

ppB. nat = ((pa. a = B8) — B)—p

Amber Rules

» Traditional Amber rules for iso-recursive subtyping.

Aa<pfFHA<LB
AF paA< up.B

(Amber-rec)

Amber-self
AF pa.A<Z ua.A(mber-self)
» Amber-rec: Compares recursive types by their bodies.
> Amber-self: Handles reflexivity for negative recursive types.
» Backtracking is required.

» Variable renaming issues.

P Reflexivity is complex for subtyping relations that are not
antisymmetric.

Nominal Unfolding Rules

» Proposed by Zhou et al. (TOPLAS 2022)

» Recursive type bodies are unfolded using labeled types.

Mat[a— AYA < [a+— BB
M- poA<pa.B

(Sn-rec)

» Exponential blowup in size due to substitution.
» Generally a problem for substitution-based algorithms.

Key Ideas in QuickSub

» Distinguishing strict subtyping from equivalence.
» Tracking polarities: Positive vs. Negative occurrences.

» But cannot be done naively!
» Handling negative recursive subtyping with equality variable
sets.

Distinguishing Strict Subtyping from Equivalence

» Algorithm does not just compute True or False.
> Instead the algorithm returns 3 possible results:

> Two types are equivalent (=2).
> The first type is a strict subtype of the second (<).
» The types have no relation.

> Example: pa.ao — nat < po.av — T
> Example: po. T = a~ pa. T — «
» Helpful to avoid backtracking for reflexivity.

Handling Negative Recursive Subtyping

> Reflexive uses of negative subtyping variables need to be

tracked:
causes failure
|
o o nat<T J, a <T ot~ ot
a” s nat<a — T X Toat<a —a v
po.o = nat £ pae.a > T pa.T > a < pa.oc—a

» Furthermore, we also need to track "fake" positive variables.

» Positive variables and other uses of negative variables do not
cause trouble.

» QuickSub employs equality variable sets for this.

The QuickSub Algorithm

Syntax:
Types AB = nat|T|A — A |alpx A
Subtyping results = =< | =g
Polarity modes) = +|-
Subtyping contexts \ = |V, a®
Equality variable sets S c= 0] {ag,...,an}

The QuickSub Algorithmic rules

(QuickSub Subtyping)

QS-TOPLT QS-VARPOS QS'VABNEG
QS-NAT QS-TOPEQ A+T ®evw Pev
¥ kg nat =g nat Yieg TRg T Yig AT Yigamga VYo amg a
QS-RECLT QS-RECEQ
¥, a® kg A < A, ¥,a® kg Ar ms Ay ags
Vg pa. Ay < pa. Az Y g pa. Ay =s pa. A
QS-RECEQIN QS-ARROW
Y, a® kg A x5 Ay aes Vg Ay $1 4 ¥ te B $2 Bs
Y ke pa. Ay ®((SUFV(A))\{a}) Ha. Az Yig Al — Az (10 52) Bi— By
N5, @ X, = RgUs, Hpe< = <

<e< = < <emxy = <

Functional QuickSub

QuickSub rules in a functional style:

Suby (nat, nat, @)

=S

Suby (T, T, ®) = =

Suby (A, T, ®) = < (HA+T)

Suby (a, a, ®) = =y (if «® € ¥)

Suby (a, a, ®) = gy (if «® € P)

Sub\y(Al — Ay, By — B, @) = Sub\y(Az,Al, é) ® Suby (B4, By, @)

Suby (pa. Ay, pa. Az, @) = < (if Suby g4e (A1, A2, ®) =<)

Suby (pa. Ay, pa. Az, ®) = =g (if Suby 4o (A1, A2, ®) ==~ anda ¢ S)
Suby (ua. Ay, pa. Az, @) = ®(SUFV(4))\{a} (fSuby ze(A1,As,®) ==s anda € S)

otherwise, Suby (A, B, ®) fails

Efficiently Updating Equality Variable Sets

v

Use imperative data structures for efficiency.

Boolean arrays to represent equality variable sets.

Set union operation is linear with respect to the number of
variables.

Overall complexity: O(mn), where m is the size of the type
and n is the number of recursive variables.

Optimized QuickSub maintains linear complexity for common
cases.

Equivalence to Amber Rules and Type Soundness

Equivalence proof to several to the Amber rules + type soundness:

QuickSub

This paper

sound
—
complete

Weakly Positive
Subtyping

sound

complete

sound & complete

Amber Rules

Nominal Unfolding
Rules

v Type soundness
o Transitivity
o Unfolding lemma
e Progress
o Preservation
. ...

Zhou et al. [2022b]’s work

Evaluation

» Implement QuickSub in OCaml.
» Compare performance with existing algorithms:
> Amber rules
» Nominal unfolding
» Complete iso-recursive subtyping?
» Equi-recursive subtyping®

» Benchmarks for different recursive type patterns and depths.

3 Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. 2017. On
subtyping-relation completeness, with an application to iso-recursive types.
TOPLAS (2017).

*Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. Recursive
subtyping revealed. JFP (2002).

Benchmark Results

=
o

QuickSub

0.0045
0.0079
0.0085
0.0221
0.0054
0.0038
0.0082
0.0817

O~NOOoT Pk~ WwWwN =

Amber
Cardelli
1.7230
0.0004
7.3775
5.7502
0.0006
0.1829
5.7185
0.0057

Complete
Ligatti
2.0541
1.9483
3.7602
3.4782
3.8383
1.2995
3.5229
3.8423

Nominal
Zhou
5.6194
6.3181
12.6697
91.0706
22.2383
0.6027
30.0276
Timeout

Equi
Gapeyev
42.0146
41.6360
Timeout
Timeout
Timeout
Timeout
Timeout
Timeout

|5|max

1
1
0
0
0
1
0
5

00 (worst)

» Various tests with comparing recursive types with depth 5000
(1-7) or 500 (8). Time in seconds.

» QuickSub fastest in 5 out of 8.

» Amber faster for reflexivity (as expected).

Benchmark Results

—m— Complete —— Amber —— QuickSub

6
= 4
Q
E
20 ’
0 ® ° r—
1,000 2,000 3,000 4,000 5,000
Depth

Test (7) Proving nested positive subtyping

Benchmark Results

—m— Complete —&— Amber —— QuickSub

0 | \
100 500 1,000 1,500 2,000

Record Width
Depth = 10

Benchmark Results

» QuickSub outperforms other algorithms in most cases.
» Handles both simple and nested recursive types efficiently.

» Linear performance in practical scenarios.

Open Challenges

» Proof of equivalence to Amber is complex.

» QuickSub is a straightforward recursive functional program.
Can we calculate QuickSub from one of the possible
specifications?

Conclusion

» QuickSub provides an efficient solution for iso-recursive
subtyping.

» Equivalence to Amber rules ensures correctness.

» Direct type soundness proof simplifies extensions and
adaptations.

» QuickSub handles record types efficiently, broadening
applicability.

	Motivation for QuickSub
	Explaining the Problem
	Existing Algorithmic Approaches
	Key Ideas in QuickSub
	The QuickSub Algorithm
	Correctness of QuickSub
	Evaluation

