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Motivation for QuickSub

v

Recursive types are essential in many programming languages.
Two main approaches: Equi-recursive and Iso-recursive types.
In languages with subtyping we need to also consider
recursive subtyping.

Efficient algorithms for iso-recursive subtyping remain
understudied.



Equi-recursive Types

» Treat recursive types and their unfoldings as identical.

» Example: poa.a = a = (pa.a = o) = (pa.a — a)
» Advantages:
» Convenient.
> No need for explicit fold/unfold operations.
» Disadvantages:
> Requires coinductive reasoning, which is costly (in terms of
performance)?.
» Metatheory complications: F.. with recursive types, ML
Modules.
» Difficult to extend with more advanced type system features.

! Andreas Rossberg. Mutually Iso-Recursive Subtyping. OOPSLA 2023



Iso-recursive Types

» Treat recursive types and their unfoldings as different.

» Example: po.a — a and (po.ao — o) — v are distinct.
» Advantages:

» Easier to scale to more advanced features.

» Simpler metatheory.

» Lower computational complexity.
» Disadvantages:

» Less convenience.

» Operational semantics complicated by fold/unfold.



Recursive Subtyping: 3 Approaches

3 Approaches with different expressive power:
» (Inductive) Amber-style iso-recursive subtyping.
» (Coinductive) Complete iso-recursive subtyping.
» (Coinductive) Equi-recursive subtyping.

Expressive power comparison:
Amber < Complete < Equi

But equi-recursive subtyping can be expressed as Amber +
equi-recursive equivalence?:

A<.B23C G . A=GANG <, GAGC =B.

2Litao Zhou, Qianyong Wan, and Bruno C. d. S. Oliveira:: OOPSLA 2024



Why QuickSub?

» An efficient algorithm for Amber iso-recursive subtyping is
missing.



Subtyping Amber-style Recursive Types

> Efficient subtyping for iso-recursive types is challenging.

> We assume standard subtyping rules for other constructs:

B < A; A < B
AT nat < nat Al > A< B = B

> How to determine if one recursive type is a subtype of another
for iso-recursive subtyping?

> We expect that recursive type unrolling preserve subtyping:

If pa.A < pa.B then A [a — paAl < B [a = paB.



Example: Positive Recursive Subtyping

> ua. T — a < pa. nat — «

» The left type can be regarded as a function that consumes
infinite values of any type.

» The right type consumes infinite nat values.

v

The left type is more general than the right type.

> Positive subtyping is easy: just compare the bodies in the
usual way!



Example: Negative Recursive Subtyping

| 2
>

| 4

po. o —nat L po. o« = T

The left type expects an input of a specific type producing nat
values.

The right type expects an input of a specific type producing
any values.

The subtyping statement does not hold, since unrollings do
not preserve subtyping.

((po. o — nat) = nat) w nat £ ((pov. a > T) = T) = T

Negative subtyping holds for reflexivity (example
pe. o — nat < po. oo — nat), and little else.



Nested Recursive Subtyping

» Example: pufS. T — (pa. a — B) < pf. nat — (pa. a — B)?
» Question: Should these be subtypes?



Nested Recursive Subtyping

v

Example: u8.T — (pa.ao — B) £ pfB.nat — (pa.a — B)
The variable 5 appears to be in a positive position.

vy

However, due to the variable o appearing negatively, the types
are not related by subtyping.

v

Complex interactions between recursive variables.

> We can see that unrollings do not preserve subtyping!
pB. T = (pa. o= ) = B)—p

£

ppB. nat = ((pa. a = B8) — B)—p



Amber Rules

» Traditional Amber rules for iso-recursive subtyping.

Aa<pfFHA<LB
AF paA< up.B

(Amber-rec)

Amber-self
AF pa.A<Z ua.A( mber-self)
» Amber-rec: Compares recursive types by their bodies.
> Amber-self: Handles reflexivity for negative recursive types.
» Backtracking is required.

» Variable renaming issues.

P Reflexivity is complex for subtyping relations that are not
antisymmetric.



Nominal Unfolding Rules

» Proposed by Zhou et al. (TOPLAS 2022)

» Recursive type bodies are unfolded using labeled types.

Mat[a— AYA < [a+— BB
M- poA<pa.B

(Sn-rec)

» Exponential blowup in size due to substitution.
» Generally a problem for substitution-based algorithms.



Key Ideas in QuickSub

» Distinguishing strict subtyping from equivalence.
» Tracking polarities: Positive vs. Negative occurrences.

» But cannot be done naively!
» Handling negative recursive subtyping with equality variable
sets.



Distinguishing Strict Subtyping from Equivalence

» Algorithm does not just compute True or False.
> Instead the algorithm returns 3 possible results:

> Two types are equivalent (=2).
> The first type is a strict subtype of the second (<).
» The types have no relation.

> Example: pa.ao — nat < po.av — T
> Example: po. T = a~ pa. T — «
» Helpful to avoid backtracking for reflexivity.



Handling Negative Recursive Subtyping

> Reflexive uses of negative subtyping variables need to be

tracked:
causes failure
|
o o nat<T J, a <T ot~ ot
a” s nat<a — T X Toat<a —a v
po.o = nat £ pae.a > T pa.T > a < pa.oc—a

» Furthermore, we also need to track "fake" positive variables.

» Positive variables and other uses of negative variables do not
cause trouble.

» QuickSub employs equality variable sets for this.



The QuickSub Algorithm

Syntax:
Types AB = nat|T|A — A |alpx A
Subtyping results = =< | =g
Polarity modes ) = +|-
Subtyping contexts \ = |V, a®
Equality variable sets S c= 0] {ag,...,an}



The QuickSub Algorithmic rules

(QuickSub Subtyping)

QS-TOPLT QS-VARPOS QS'VABNEG
QS-NAT QS-TOPEQ A+T ®evw Pev
¥ kg nat =g nat Yieg TRg T Yig AT Yigamga VYo amg a
QS-RECLT QS-RECEQ
¥, a® kg A < A, ¥,a® kg Ar ms Ay ags
Vg pa. Ay < pa. Az Y g pa. Ay =s pa. A
QS-RECEQIN QS-ARROW
Y, a® kg A x5 Ay aes Vg Ay $1 4 ¥ te B $2 Bs
Y ke pa. Ay ®((SUFV(A))\{a}) Ha. Az Yig Al — Az (10 52) Bi— By
N5, @ X, = RgUs, Hpe< = <

<e< = < <emxy = <



Functional QuickSub

QuickSub rules in a functional style:

Suby (nat, nat, @)

=S

Suby (T, T, ®) = =

Suby (A, T, ®) = < (HA+T)

Suby (a, a, ®) = =y (if «® € ¥)

Suby (a, a, ®) = gy (if «® € P)

Sub\y(Al — Ay, By — B, @) = Sub\y(Az,Al, é) ® Suby (B4, By, @)

Suby (pa. Ay, pa. Az, @) = < (if Suby g4e (A1, A2, ®) =<)

Suby (pa. Ay, pa. Az, ®) = =g (if Suby 4o (A1, A2, ®) ==~ anda ¢ S)
Suby (ua. Ay, pa. Az, @) = ®(SUFV(4))\{a} (fSuby ze(A1,As,®) ==s anda € S)

otherwise, Suby (A, B, ®) fails



Efficiently Updating Equality Variable Sets

v

Use imperative data structures for efficiency.

Boolean arrays to represent equality variable sets.

Set union operation is linear with respect to the number of
variables.

Overall complexity: O(mn), where m is the size of the type
and n is the number of recursive variables.

Optimized QuickSub maintains linear complexity for common
cases.



Equivalence to Amber Rules and Type Soundness

Equivalence proof to several to the Amber rules + type soundness:

QuickSub

This paper

sound
—
complete

Weakly Positive
Subtyping

sound

complete

sound & complete

Amber Rules

Nominal Unfolding
Rules

v Type soundness
o Transitivity
o Unfolding lemma
e Progress
o Preservation
. ...

Zhou et al. [2022b]’s work



Evaluation

» Implement QuickSub in OCaml.
» Compare performance with existing algorithms:
> Amber rules
» Nominal unfolding
» Complete iso-recursive subtyping?
» Equi-recursive subtyping®

» Benchmarks for different recursive type patterns and depths.

3 Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. 2017. On
subtyping-relation completeness, with an application to iso-recursive types.
TOPLAS (2017).

*Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. Recursive
subtyping revealed. JFP (2002).



Benchmark Results
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» Various tests with comparing recursive types with depth 5000
(1-7) or 500 (8). Time in seconds.

» QuickSub fastest in 5 out of 8.

» Amber faster for reflexivity (as expected).



Benchmark Results
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Test (7) Proving nested positive subtyping



Benchmark Results
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Benchmark Results

» QuickSub outperforms other algorithms in most cases.
» Handles both simple and nested recursive types efficiently.

» Linear performance in practical scenarios.



Open Challenges

» Proof of equivalence to Amber is complex.

» QuickSub is a straightforward recursive functional program.
Can we calculate QuickSub from one of the possible
specifications?



Conclusion

» QuickSub provides an efficient solution for iso-recursive
subtyping.

» Equivalence to Amber rules ensures correctness.

» Direct type soundness proof simplifies extensions and
adaptations.

» QuickSub handles record types efficiently, broadening
applicability.
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