
QuickSub: Efficient Iso-Recursive Subtyping

Bruno C. d. S. Oliveira (joint work with Litao Zhou)

Canberra WG2.1 Meeting

Motivation for QuickSub

▶ Recursive types are essential in many programming languages.

▶ Two main approaches: Equi-recursive and Iso-recursive types.

▶ In languages with subtyping we need to also consider
recursive subtyping.

▶ Efficient algorithms for iso-recursive subtyping remain
understudied.

Equi-recursive Types

▶ Treat recursive types and their unfoldings as identical.

▶ Example: µα.α → α = (µα.α → α) → (µα.α → α)
▶ Advantages:

▶ Convenient.
▶ No need for explicit fold/unfold operations.

▶ Disadvantages:
▶ Requires coinductive reasoning, which is costly (in terms of

performance)1.
▶ Metatheory complications: F<: with recursive types, ML

Modules.
▶ Difficult to extend with more advanced type system features.

1Andreas Rossberg. Mutually Iso-Recursive Subtyping. OOPSLA 2023

Iso-recursive Types

▶ Treat recursive types and their unfoldings as different.

▶ Example: µα.α → α and (µα.α → α) → α are distinct.
▶ Advantages:

▶ Easier to scale to more advanced features.
▶ Simpler metatheory.
▶ Lower computational complexity.

▶ Disadvantages:
▶ Less convenience.
▶ Operational semantics complicated by fold/unfold.

Recursive Subtyping: 3 Approaches

3 Approaches with different expressive power:

▶ (Inductive) Amber-style iso-recursive subtyping.

▶ (Coinductive) Complete iso-recursive subtyping.

▶ (Coinductive) Equi-recursive subtyping.

Expressive power comparison:

Amber < Complete < Equi

But equi-recursive subtyping can be expressed as Amber +
equi-recursive equivalence2:

A ≤e B ≜ ∃C1 C2. A
.
= C1 ∧ C1 ≤i C2 ∧ C2

.
= B.

2Litao Zhou, Qianyong Wan, and Bruno C. d. S. Oliveira. OOPSLA 2024.

Why QuickSub?

▶ An efficient algorithm for Amber iso-recursive subtyping is
missing.

Subtyping Amber-style Recursive Types

▶ Efficient subtyping for iso-recursive types is challenging.

▶ We assume standard subtyping rules for other constructs:

A ≤ ⊤ nat ≤ nat

B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

▶ How to determine if one recursive type is a subtype of another
for iso-recursive subtyping?

▶ We expect that recursive type unrolling preserve subtyping:

If µα.A ≤ µα.B then A [α 7→ µα.A] ≤ B [α 7→ µα.B].

Example: Positive Recursive Subtyping

▶ µα.T → α ≤ µα. nat → α

▶ The left type can be regarded as a function that consumes
infinite values of any type.

▶ The right type consumes infinite nat values.

▶ The left type is more general than the right type.

▶ Positive subtyping is easy: just compare the bodies in the
usual way!

Example: Negative Recursive Subtyping

▶ µα. α → nat ̸≤ µα. α → T

▶ The left type expects an input of a specific type producing nat
values.

▶ The right type expects an input of a specific type producing
any values.

▶ The subtyping statement does not hold, since unrollings do
not preserve subtyping.

((µα. α → nat) → nat) → nat ≰ ((µα. α → ⊤) → ⊤) → ⊤

▶ Negative subtyping holds for reflexivity (example
µα. α → nat ≤ µα. α → nat), and little else.

Nested Recursive Subtyping

▶ Example: µβ. T → (µα. α → β) ≤ µβ. nat → (µα. α → β)?

▶ Question: Should these be subtypes?

Nested Recursive Subtyping

▶ Example: µβ.T → (µα.α → β) ̸≤ µβ.nat → (µα.α → β)

▶ The variable β appears to be in a positive position.

▶ However, due to the variable α appearing negatively, the types
are not related by subtyping.

▶ Complex interactions between recursive variables.

▶ We can see that unrollings do not preserve subtyping!

µβ. ⊤ → ((µα. α → β) → β) → β

≰

µβ. nat → ((µα. α → β) → β) → β

Amber Rules

▶ Traditional Amber rules for iso-recursive subtyping.

∆, α ≤ β ⊢ A ≤ B

∆ ⊢ µα.A ≤ µβ.B
(Amber-rec)

∆ ⊢ µα.A ≤ µα.A
(Amber-self)

▶ Amber-rec: Compares recursive types by their bodies.

▶ Amber-self: Handles reflexivity for negative recursive types.

▶ Backtracking is required.

▶ Variable renaming issues.

▶ Reflexivity is complex for subtyping relations that are not
antisymmetric.

Nominal Unfolding Rules

▶ Proposed by Zhou et al. (TOPLAS 2022)

▶ Recursive type bodies are unfolded using labeled types.

Γ, α ⊢ [α 7→ Aα]A ≤ [α 7→ Bα]B

Γ ⊢ µα.A ≤ µα.B
(Sn-rec)

▶ Exponential blowup in size due to substitution.
▶ Generally a problem for substitution-based algorithms.

Key Ideas in QuickSub

▶ Distinguishing strict subtyping from equivalence.
▶ Tracking polarities: Positive vs. Negative occurrences.

▶ But cannot be done naively!
▶ Handling negative recursive subtyping with equality variable

sets.

Distinguishing Strict Subtyping from Equivalence

▶ Algorithm does not just compute True or False.
▶ Instead the algorithm returns 3 possible results:

▶ Two types are equivalent (≈).
▶ The first type is a strict subtype of the second (<).
▶ The types have no relation.

▶ Example: µα.α → nat < µα.α → ⊤
▶ Example: µα.⊤ → α ≈ µα.⊤ → α

▶ Helpful to avoid backtracking for reflexivity.

Handling Negative Recursive Subtyping

▶ Reflexive uses of negative subtyping variables need to be
tracked:

▶ Furthermore, we also need to track ”fake” positive variables.

▶ Positive variables and other uses of negative variables do not
cause trouble.

▶ QuickSub employs equality variable sets for this.

The QuickSub Algorithm

Syntax:

Types A,B ::= nat | ⊤ | A1 → A2 | α | µα. A
Subtyping results ⪅ ::= < | ≈S

Polarity modes ⊕ ::= + | −
Subtyping contexts Ψ ::= · | Ψ, α⊕

Equality variable sets S ::= ∅ | {α1, . . . , αn}

The QuickSub Algorithmic rules

Functional QuickSub

QuickSub rules in a functional style:

Efficiently Updating Equality Variable Sets

▶ Use imperative data structures for efficiency.

▶ Boolean arrays to represent equality variable sets.

▶ Set union operation is linear with respect to the number of
variables.

▶ Overall complexity: O(mn), where m is the size of the type
and n is the number of recursive variables.

▶ Optimized QuickSub maintains linear complexity for common
cases.

Equivalence to Amber Rules and Type Soundness

Equivalence proof to several to the Amber rules + type soundness:

Evaluation

▶ Implement QuickSub in OCaml.
▶ Compare performance with existing algorithms:

▶ Amber rules
▶ Nominal unfolding
▶ Complete iso-recursive subtyping3

▶ Equi-recursive subtyping4

▶ Benchmarks for different recursive type patterns and depths.

3Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. 2017. On
subtyping-relation completeness, with an application to iso-recursive types.
TOPLAS (2017).

4Vladimir Gapeyev, Michael Y Levin, and Benjamin C Pierce. Recursive
subtyping revealed. JFP (2002).

Benchmark Results

No. QuickSub
Amber
Cardelli

Complete
Ligatti

Nominal
Zhou

Equi
Gapeyev

|S |max

1 0.0045 1.7230 2.0541 5.6194 42.0146 1
2 0.0079 0.0004 1.9483 6.3181 41.6360 1
3 0.0085 7.3775 3.7602 12.6697 Timeout 0
4 0.0221 5.7502 3.4782 91.0706 Timeout 0
5 0.0054 0.0006 3.8383 22.2383 Timeout 0
6 0.0038 0.1829 1.2995 0.6027 Timeout 1
7 0.0082 5.7185 3.5229 30.0276 Timeout 0
8 0.0817 0.0057 3.8423 Timeout Timeout 500 (worst)

▶ Various tests with comparing recursive types with depth 5000
(1-7) or 500 (8). Time in seconds.

▶ QuickSub fastest in 5 out of 8.

▶ Amber faster for reflexivity (as expected).

Benchmark Results

Benchmark Results

Benchmark Results

▶ QuickSub outperforms other algorithms in most cases.

▶ Handles both simple and nested recursive types efficiently.

▶ Linear performance in practical scenarios.

Open Challenges

▶ Proof of equivalence to Amber is complex.

▶ QuickSub is a straightforward recursive functional program.
Can we calculate QuickSub from one of the possible
specifications?

Conclusion

▶ QuickSub provides an efficient solution for iso-recursive
subtyping.

▶ Equivalence to Amber rules ensures correctness.

▶ Direct type soundness proof simplifies extensions and
adaptations.

▶ QuickSub handles record types efficiently, broadening
applicability.

	Motivation for QuickSub
	Explaining the Problem
	Existing Algorithmic Approaches
	Key Ideas in QuickSub
	The QuickSub Algorithm
	Correctness of QuickSub
	Evaluation

