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Many programming languages need to check whether two recursive types are in a subtyping relation. Tra-

ditionally recursive types are modelled in two different ways: equi- or iso- recursive types. While efficient

algorithms for subtyping equi-recursive types are well studied for simple type systems, efficient algorithms

for iso-recursive subtyping remain understudied.

In this paper we present QuickSub: an efficient and simple to implement algorithm for iso-recursive

subtyping. QuickSub has the same expressive power as the well-known iso-recursive Amber rules. The worst

case complexity of QuickSub is𝑂 (𝑛𝑚), where𝑚 is the size of the type and 𝑛 is the number of recursive binders.

However, in practice, the algorithm is nearly linear with the worst case being hard to reach. Consequently,

in many common cases, QuickSub can be several times faster than alternative algorithms. We validate the

efficiency of QuickSub with an empirical evaluation comparing it to existing equi-recursive and iso-recursive

subtyping algorithms. We prove the correctness of the algorithm and formalize a simple calculus with recursive

subtyping and records. For this calculus we also show how type soundness can be proved using QuickSub. All
the results have been formalized and proved in the Coq proof assistant.

CCS Concepts: • Theory of computation → Type theory; • Software and its engineering → Object
oriented languages.
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1 Introduction
There are two main approaches to model recursive types in type systems: equi-recursive types and

iso-recursive types. Iso-recursive types [Crary et al. 1999] treat a recursive type and its unfolding as

different types. The recursive type and its unfolding are related by inserting term level fold/unfold

constructs. Equi-recursive types [Morris 1968] treat recursive types and their unfoldings as equal:

𝜇𝛼.𝐴 = [𝜇𝛼.𝐴/𝛼]𝐴
since they represent the same infinite tree [Amadio and Cardelli 1993]. Equi-recursive equivalence

is powerful and useful to type check many programs without requiring explicit fold and unfold

annotations. This can be convenient for programming, since there is no need to change the term

structure. In addition, equi-recursive subtyping is also well-studied [Amadio and Cardelli 1993].

While equi-recursive types look appealing, there are some important considerations when

choosing whether to adopt them. The powerful form of equivalence or subtyping comes at a cost.

As it is well-known from the literature [Brandt and Henglein 1998], equi-recursive equivalence

and subtyping requires coinductive reasoning. Coinductive reasoning leads to complications in the

metatheory, as well as to relatively high algorithmic complexity. Thus, there has been significant
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research effort on efficient algorithms for both equi-recursive subtyping [Gapeyev et al. 2002;

Kozen et al. 1993] and equivalence [Cardone and Coppo 1991; Coppo 1985] for simple type systems.

Gapeyev et al. presented an efficient algorithm for checking equi-recursive subtyping with at

most 𝑂 (𝑛2) recursive calls, where 𝑛 is the number of recursive binders. Kozen et al. reduced the

subtyping problem to the problem of testing automata emptiness and achieved quadratic time

complexity. Therefore, it can be said that efficient algorithms for equi-recursive subtyping have

been foundationally well understood in the literature, despite the overall computational costs still

being expensive.

Equi-recursive algorithms are also non-trivial to extend with more advanced type system features.

For instance, the interaction between equi-recursive types and type constructors, which is necessary

for modeling ML-style recursive modules [Crary et al. 1999], is complex: it is unknownwhether type

equivalence remains decidable in that setting. For another example, the combination of bounded

quantification and equi-recursive subtyping introduces significant complications [Colazzo and

Ghelli 2005; Ghelli 1993; Jeffrey 2001], and requires rather complex metatheory.

Iso-recursive types are less convenient but, on the other hand, they: 1) are easier to scale to

more advanced features; 2) have comparatively simpler metatheory; and, 3) are perceived as having

computationally less complex operations. The first two points are backed up by strong evidence

in the literature. For instance, follow-up work on recursive modules has adopted iso-recursive

types to obtain more practical module systems with decidable type equivalence [Dreyer 2005;

Dreyer et al. 2001; Russo 2001], since the interaction of iso-recursive types and type constructors is

simpler. The interaction between bounded quantification and iso-recursive typing is also simple, as

illustrated by Zhou et al. [2023], leading to a natural extension of 𝐹<: [Cardelli and Wegner 1985]

with iso-recursive types. In addition, despite being less convenient, iso-recursive types are known

to have the same expressive power as equi-recursive types [Abadi and Fiore 1996; Zhou et al. 2024].

The point about computational complexity (3) deserves more discussion. Since most formulations

of iso-recursive types remain inductive, iso-recursive subtyping algorithms only have to deal with

finite trees. Rossberg [2023] argues that is an important point to consider for performance sensitive

applications as, in principle, it leads to more efficient implementations of equivalence and subtyping.

Rossberg is motivated by the use of recursive types inWebAssembly (Wasm) and type-safe low-level

languages in general. He argues that, in those performance sensitive settings, iso-recursive types

are a significantly more attractive choice compared to equi-recursive types. His work presents

an efficient formulation of declared iso-recursive types, which are adopted in practice by Wasm.

This declared formulation of iso-recursive types is very efficient as it only requires subtyping to be

checked at the declaration of recursive types.

Unlike equi-recursive types, efficient subtyping algorithms for iso-recursive types have received

less attention in the literature. For traditional iso-recursive types the most well-known formulation

of subtyping employs the Amber rules [Cardelli 1985, 1993]. In contrast to Rossberg’s more restric-

tive declared subtyping, the Amber rules follow a purely structural approach where a recursive

type is related to any other recursive type with a compatible structure. Furthermore, the Amber

rules are inductively defined, which, according to Rossberg, should be an advantage in obtaining

an algorithmic formulation. However, a naive implementation of the Amber rules has exponential

time complexity, which is worse than the complexity reported for the best-known algorithms for

equi-recursive subtyping. The culprit for the cost of the Amber rules is the need for a built-in

reflexivity rule. While several alternative formulations of subtyping with equivalent expressive

power to the Amber rules exist in the literature [Zhou et al. 2022b], and can avoid built-in reflexivity,

none of these formulations is efficient. Surprisingly, there is little work on efficient formulations

of (non-declared) iso-recursive subtyping. A notable exception is the work by Ligatti et al. [2017],
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which presents a more powerful formulation of iso-recursive subtyping, using coinductive tech-

niques similar to those adopted in equi-recursive subtyping. Ligatti et al. designed an algorithm

with efficiency in mind. However, the use of coinductive reasoning still leads to relatively high

computational costs in practice.

In this paper we present QuickSub: an efficient algorithm for iso-recursive subtyping, which

is also simple to implement. We prove that QuickSub has the same expressive power as the iso-

recursive Amber rules. The worst case complexity of QuickSub is 𝑂 (𝑛𝑚), where𝑚 is the size of

the type and 𝑛 is the number of recursive binders. However, the worst case is hard to reach. Many

common cases are linear in practice. For instance, for positive recursive types – which are the

only kinds of recursive types supported in languages like Coq [Coq Development Team 2024] or

Agda [Norell 2007], and the most common case in functional programming – the algorithm is

linear in practice. Moreover, there are still many cases with negative recursive types where the

algorithm remains linear. Consequently, QuickSub can be several times faster (sometimes by orders

of magnitude) than alternative algorithms, in those cases.

The efficiency of QuickSub is validated via an empirical evaluation comparing it to existing

equi-recursive and iso-recursive subtyping algorithms implemented in OCaml [Leroy et al. 2021].

In addition we formalize a simple calculus with recursive subtyping and records. For this calculus

we also show how type soundness, transitivity of subtyping and the unfolding lemma [Zhou et al.

2022b] can be proved using QuickSub.
We believe that our work validates the perceived intuition that (inductive) iso-recursive subtyping

is, in practice, computationally simpler than formulations based on coinduction. Furthermore, it

provides a practical and effective algorithm that can be employed in applications where performance

is an important consideration or when equi-recursive subtyping is impractical or undecidable.

In summary, the contributions of this paper are:

• An efficient algorithm for iso-recursive subtyping. We introduce QuickSub, a novel
algorithm for iso-recursive subtyping that significantly improves efficiency over existing

algorithmic formulations.

• Equivalence proof to the Amber rules.We prove that QuickSub is equivalent in expressive
power to the well-known iso-recursive Amber rules.

• A direct proof of type soundness of the subtyping rules. We provide a direct type

soundness proof for a calculus that employs iso-recursive types and QuickSub subtyping,

without relying on any equivalence results to other existing iso-recursive subtyping rules.

• Extension to record types.We extend QuickSub to QuickSub{} that handles record sub-

typing, broadening the applicability and flexibility of the algorithm.

• Coq formalization, OCaml implementation and empirical evaluation.We provide a

mechanical formalization and proofs for all the results in Coq. We also evaluate an OCaml

implementation of the algorithm and discuss its performance.

2 Overview
This section provides background of existing approaches to iso-recursive subtyping, and their

drawbacks in terms of efficiency. Then it introduces key ideas leading to QuickSub.

2.1 Subtyping Iso-Recursive Types
For recursive types it is common and useful to have subtyping. The metatheory of both equi-

recursive subtyping [Amadio and Cardelli 1993; Brandt and Henglein 1998; Danielsson and Al-

tenkirch 2010; Gapeyev et al. 2002] and iso-recursive subtyping [Cardelli 1985; Ligatti et al. 2017;

Zhou et al. 2020, 2022b] has been studied in the literature. In this paper, we focus on iso-recursive
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subtyping. Before diving into the rules for subtyping iso-recursive types, we first look at some

examples to see what kind of recursive types can be in a subtyping relation. We assume standard

structural subtyping rules for basic type constructs, such as:

𝐴 ≤ ⊤ nat ≤ nat
𝐵1 ≤ 𝐴1 𝐴2 ≤ 𝐵2

𝐴1 → 𝐴2 ≤ 𝐵1 → 𝐵2

The subtyping rule for function types is contravariant in the argument type and covariant in the

return type.

With iso-recursive subtyping, it is expected that if two recursive types are subtypes, then their

unfoldings should also be subtypes, which can be expressed as follows:

If 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵 then 𝐴 [𝛼 ↦→ 𝜇𝛼. 𝐴] ≤ 𝐵 [𝛼 ↦→ 𝜇𝛼. 𝐵] .
This property is called the unfolding lemma in the literature [Zhou et al. 2022b], and plays a key

role in the type soundness proof in calculi with iso-recursive subtyping. We will reason about the

unfolding lemma formally for QuickSub in Section 3. Readers may refer to Zhou et al. [2022b] for

a more comprehensive discussion on this property. Here we use the unfolding lemma to identify

valid subtyping relations between various examples.

The examples are categorized by different polarities (positive and negative) of recursive variables.

Simply put, a type variable occurs positively if it appears on the left side of an even number of

arrows (→) in a function type, and negatively if it appears on the left side of an odd number of

arrows. For example, in the type 𝛼 → (𝛽 → 𝛾), 𝛼 and 𝛽 occurs negatively, while 𝛾 occurs positively.

We will see that the polarity of recursive variables plays a crucial role in determining the subtyping

relation between recursive types.

Positive recursive subtyping. Consider 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. nat → 𝛼 , where the recursive variable 𝛼

appears positively. The left type can be regarded as a function that consumes infinite values of any

type, and the right type consumes infinite nat values. Therefore, the left type is more general than

the right type. The unfolding lemma is helpful to validate this subtyping statement:

𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. nat → 𝛼 ⇒ ⊤ → (𝜇𝛼. ⊤ → 𝛼) ≤ nat → (𝜇𝛼. nat → 𝛼)
After unfolding, we have to check that nat <: ⊤, which is true. If we continue applying additional

unfoldings, the subtyping statement would remain valid and simply require more nat <: ⊤ sub-

statements to be validated. When the recursive variable only appears in positive positions, the

subtyping relation is straightforward: it suffices to compare the recursive bodies for subtyping.

Negative recursive subtyping. Next, we consider 𝜇𝛼. 𝛼 → nat ≰ 𝜇𝛼. 𝛼 → ⊤, where the type on
the left can be seen as an object that takes itself and produces a nat value. In contrast, the type on

the right takes itself and produces a top value. The subtyping statement above does not hold, as a
term of the left type cannot be used where the right type is expected. The type on the right expects

an input of an object capable of producing any values, but the type on the left only produces nat
values. This inconsistency can be discovered by unfolding the recursive types twice:

((𝜇𝛼. 𝛼 → nat) → nat) → nat ≰ ((𝜇𝛼. 𝛼 → ⊤) → ⊤) → ⊤
Due to the contravariant comparison in function types, we need to check not only nat ≤ ⊤ but

also ⊤ ≤ nat, which does not hold. It can be seen that negative occurrences of recursive variables

prevent many subtyping statements that should hold when the recursive variables are considered as

free variables, as in the positive recursive subtyping case. Indeed, they make the subtyping relation

“almost” equality. Since the reflexivity property is expected for subtyping, subtyping judgments

like 𝜇𝛼. 𝛼 → nat ≤ 𝜇𝛼. 𝛼 → nat should still hold.

At this point it is useful to introduce the concept of equivalent and strict subtyping, which will

play an important role in QuickSub. By equivalent subtyping, we mean that two types are subtypes
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of each other, i.e. 𝐴 and 𝐵 are equivalent if 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴. In negative recursive subtyping,

recursive types that have equivalent bodies should also be equivalent and therefore in the subtyping

relation. By strict subtyping, we mean that 𝐴 is a subtype of 𝐵 but 𝐵 is not a subtype of 𝐴.

Special cases in negative recursive subtyping. Including equivalent subtyping is not the end of the

story for subtyping negative recursive types. For example, consider 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. 𝛼 → 𝛼 , which

is a valid strict subtyping relation with negative recursive types. Despite the negative occurrence

of 𝛼 in the right type, if we unroll the two recursive types, what we need to compare is

⊤ → (𝜇𝛼. ⊤ → 𝛼) ≤ (𝜇𝛼. 𝛼 → 𝛼) → (𝜇𝛼. 𝛼 → 𝛼)

and the contravariant comparison 𝜇𝛼. 𝛼 → 𝛼 ≤ ⊤ clearly holds.

Handling negative recursive subtyping can be quite tricky. There are many invalid subtyping

statements due to contravariance of function types, but we must still allow for the special cases

such as reflexivity and subtyping with ⊤ types to hold. Existing approaches to iso-recursive

subtyping have introduced various strategies to navigate these complexities and proposed several

sets of inference rules for subtyping iso-recursive types. However, these solutions often entail a

compromise on efficiency, as we will discuss in the next section.

Nested recursive subtyping. The problem of subtyping iso-recursive types becomes even more

complicated when nested recursive types are involved. The polarity of variables becomes less clear

in the presence of nested recursive types. Consider comparing the following two types:

𝜇𝛽. ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≰ 𝜇𝛽. nat → (𝜇𝛼. 𝛼 → 𝛽)

The variable 𝛽 appears to be in a positive position in the recursive body of the two types. However,

due to the existence of a variable 𝛼 appearing in a negative position, the two types are not related

by subtyping. To see this, we unfold the 𝜇𝛼. 𝛼 → 𝛽 twice and compare the two types:

𝜇𝛽. ⊤ → ((𝜇𝛼. 𝛼 → 𝛽) → 𝛽 ) → 𝛽 ≰ 𝜇𝛽. nat → ((𝜇𝛼. 𝛼 → 𝛽) → 𝛽 ) → 𝛽

As highlighted by the gray color, the variable 𝛽 appears in a negative position in the recursive body

after unfolding. Since the recursive bodies for the 𝛽 variable are strict subtypes, the two types are

not subtypes. This example shows that nested recursive types can hide negative occurrences of

recursive variables as “apparently” positive ones. Thus, it is difficult to test for the positivity of

recursive variables, and the subtyping rules need to be carefully designed to handle such cases.

2.2 Algorithmic Iso-Recursive Subtyping
There are several existing approaches that provide algorithms for iso-recursive subtyping. Next we

give an overview of existing approaches and their issues in terms of efficiency.

Amber-style iso-recursive subtyping. The Amber rules have long been known and used for sub-

typing iso-recursive types. They were initially introduced informally by Cardelli [1985] in the

Amber programming language, and later formally studied by Amadio and Cardelli for subtyping

equi-recursive types. For subtyping iso-recursive types, variants of Amadio and Cardelli’s rules

have been widely used in many different calculi and programming languages [Abadi and Cardelli

1996; Abadi and Fiore 1996; Bengtson et al. 2011; Chugh 2015; Duggan 2002; Lee et al. 2015; Swamy

et al. 2011]. The key rules are the rules Amber-var and Amber-rec to compare recursive types.

Amber-var

𝛼 ≤ 𝛽 ∈ Δ

Δ ⊢𝑎𝑚𝑏 𝛼 ≤ 𝛽

Amber-rec

Δ, 𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 A ≤ B

Δ ⊢𝑎𝑚𝑏 𝜇𝛼. A ≤ 𝜇𝛽. B

Amber-self

Δ ⊢𝑎𝑚𝑏 𝜇𝛼. A ≤ 𝜇𝛼. A
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For example, the derivation below shows an application of the Amber rules for subtyping the

positive recursive subtyping example that we have seen before:

𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 nat ≤ ⊤
𝛼 ≤ 𝛽 ∈ 𝛼 ≤ 𝛽

Amber-var

𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 𝛼 ≤ 𝛽
Amber-arrow

𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 ⊤ → 𝛼 ≤ nat → 𝛽
Amber-rec· ⊢𝑎𝑚𝑏 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛽. nat → 𝛽

As discussed before, due to the contravariance of function subtyping, many negative recursive

types should be prevented from the subtyping relation. For example, 𝜇𝛼. 𝛼 → nat is not a subtype
of 𝜇𝛽. 𝛽 → ⊤. The Amber rules deal with this issue nicely with rule Amber-rec, as shown below:

. . . 𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 𝛽 ≰ 𝛼
Amber-arrow

𝛼 ≤ 𝛽 ⊢𝑎𝑚𝑏 𝛼 → nat ≰ 𝛽 → ⊤
Amber-rec· ⊢𝑎𝑚𝑏 𝜇𝛼. 𝛼 → nat ≰ 𝜇𝛽. 𝛽 → ⊤

However, such a design also prevents negative recursive types from being subtypes of themselves,

which should be allowed due to reflexivity. Therefore, an explicit reflexivity rule Amber-self

is needed to handle this case. The presence of rule Amber-self introduces a non-deterministic

choice in the subtyping algorithm, since this rule overlaps with rule Amber-rec. This results in a

significant performance overhead in the presence of nested recursive types. The built-in reflexivity

rule also makes it difficult for the subtyping relation to be extended to non-antisymmetric subtyping

relations [Ligatti et al. 2017; Zhou et al. 2022b], such as record subtyping, as discussed in Section 4.

Another technical issue with the Amber rules is that the recursive variable names need to be

carefully chosen. When using the rule Amber-rec, the names for the two recursive type variables

must be different. This is not conventional in practice, as programmers may write their own names

for recursive types or compilers may generate variable names for anonymous recursive types in a

way that does not satisfy this requirement. If one considers an internal representation of recursive

types, such as de Bruijn indices [De Bruijn 1972] or named representations, then in order to use

the Amber rules, one needs to traverse the recursive body every time using rule Amber-rec and

rename the variables to a fresh free variable, which leads to a bottleneck in performance as well.

Cardelli [1993] considered an alternative algorithmic formulation of the Amber rules using

de Bruijn indices that avoids the issue of variable renaming and non-deterministic choices of

recursive subtyping rules [Cardelli 1993, Appendix G.2]. Essentially he defined a new set of rules

to compute the “ties” between the recursion variables, which decides whether the recursive types

are positive or not before comparing the recursive bodies. However, as we have discussed, with

negative recursive subtyping, there can be more complex cases than just equivalence. Since Cardelli

[1993]’s algorithmic rules differ a lot from the original form of the Amber rules and there are

no formal proofs for the algorithmic rules, it is not clear whether the rules still have the same

expressive power as the Amber rules. Moreover, computing the ties requires several extra traversals

for the recursive types, and the equivalence is checked by running the subtyping algorithm twice,

i.e. checking 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴 for 𝐴 ≈ 𝐵, which still incurs a performance overhead.

Subtyping by nominal unfolding. Despite the Amber rules being widely used in practice, the

metatheory for the iso-recursive subtyping Amber rules has not been well studied until re-

cently [Zhou et al. 2020, 2022b]. In Zhou et al.’s work, they proposed a new specification for

iso-recursive subtyping rules by finite unfolding, and showed its equivalence to the Amber rules.

They have also formulated an algorithmic subtyping relation, called nominal unfolding, to deal with
iso-recursive subtyping. The nominal unfoldings rules are easy to work with formally and extend

to other subtyping relations, such as records, intersection types [Zhou et al. 2022a], and bounded
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quantification [Zhou et al. 2023] with mechanized proofs in Coq. The nominal unfolding rules are:

SN-var

⊢ Γ 𝛼 ∈ Γ

Γ ⊢𝑛 𝛼 ≤ 𝛼

SN-rec

Γ, 𝛼 ⊢𝑛 [𝛼 ↦→ A𝛼 ] A ≤ [𝛼 ↦→ B𝛼 ] B
Γ ⊢𝑛 𝜇𝛼. A ≤ 𝜇𝛼. B

SN-label

Γ ⊢𝑛 A ≤ B

Γ ⊢𝑛 A𝛼 ≤ B𝛼

The key design for the nominal unfolding rules is that recursive type bodies need to be unfolded by

labeled types 𝐴𝛼
instead of just variables 𝛼 . Labeled types basically help with the double unfolding

of the recursive type (as seen in the premise of rule SN-rec), so that the contravariant occurrences

of recursive variables can be checked with an extra unfolding. The labels provide a distinct nominal

identity to the unfolded form of recursive types so that they can only be compared to unfoldings of

the same recursive type. For example, checking the previous positive subtyping example with the

nominal unfolding rules follows the derivation below:

𝛼 ⊢𝑛 nat ≤ ⊤

𝛼 ⊢𝑛 nat ≤ ⊤
SN-var

𝛼 ⊢𝑛 𝛼 ≤ 𝛼
SN-arrow

𝛼 ⊢𝑛 ⊤ → 𝛼 ≤ nat → 𝛼
SN-label

𝛼 ⊢𝑛 (⊤ → 𝛼)𝛼 ≤ (nat → 𝛼)𝛼
SN-arrow

𝛼 ⊢𝑛 ⊤ → (⊤ → 𝛼)𝛼 ≤ nat → (nat → 𝛼)𝛼
SN-rec· ⊢𝑛 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. nat → 𝛼

The nominal unfolding rules differ from the Amber rules in several ways. Firstly, recursive type

variables are not required to be distinct, which makes the rules more convenient for reasoning and

fits better with various representations of binders. Secondly, in terms of metatheory, the nominal

unfolding rules do not have a built-in reflexivity rule, which makes the subtyping relation applicable

to subtyping relations that are not antisymmetric. Zhou et al. proved that the nominal unfolding

rules are type sound, and have the same expressive power as the iso-recursive Amber rules via an

intermediate iso-recursive subtyping formulation, calledweakly positive subtyping. This formulation

is discussed in Section 3.2 to establish the expressive power of QuickSub.
Despite these results, the nominal rules are not an efficient algorithm to use in practice. As one

can see in rule SN-rec, the unfolding of recursive types can cause an exponential blowup of size in

terms of the depth of nested recursive variables. The weakly positive subtyping formulation also

has its implementation issues, as we will discuss after introducing them in Section 3.2.

Complete iso-recursive subtyping. As we have seen, the Amber rules, as well as equivalent formu-

lations such as the nominal unfolding rules, lack an efficient algorithmic implementation. There

are alternatives to the Amber rules though, that may have a different expressive power but come

with efficient algorithms. One such alternative is by Ligatti et al. [2017]. They find that the Amber

rules are sound, but incomplete with respect to type-safety. In other words, there can be more

subtyping statements that are not covered by the Amber rules, but are still type-safe in the setting

of iso-recursive types. These mainly come from recursive type unrolling. The rules for subtyping

recursive types employed by Ligatti et al. are:

𝑆, 𝜇𝛼. 𝐴 ≤ 𝜇𝛽. 𝐵 ⊢ [𝛼 ↦→ 𝜇𝛼. 𝐴] 𝐴 ≤ [𝛽 ↦→ 𝜇𝛽. 𝐵] 𝐵
𝑆 ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛽. 𝐵

L17-rec1

(𝜇𝛼. 𝐴 ≤ 𝜇𝛽. 𝐵) ∈ 𝑆

𝑆 ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛽. 𝐵
L17-rec2

The basic idea is that subtyping environments 𝑆 track all subtyping relations between recursive

types that have already been observed. When deciding whether two recursive types are in a

subtyping relation, the environment is consulted first to see if the relation has been observed

before (rule L17-rec2). If not, the relation is added to the environment and the recursive type

variables are replaced by the recursive types in the bodies (rule L17-rec1). Rule L17-rec1 resembles

similar designs in equi-recursive subtyping rules [Brandt and Henglein 1998; Gapeyev et al. 2002],
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and pushes the iso-recursive subtyping relation one step further to also consider recursive type

unrolling. For example, the subtyping relation 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. ⊤ → (𝜇𝛽. nat → 𝛽) is accepted
by their rules, but not by the Amber rules. For a detailed discussion we refer to Zhou et al. [2022b]’s

paper for a comparison between the Amber rules and the rules by Ligatti et al..

Rule L17-rec1 may look costly in terms of performance, as it requires unfolding the recursive

types with themselves. However, in practice, it can be implemented by compressing all repre-

sentations of 𝜇-types into an “unroll table” that maps recursive type variables to their unrolled

counterparts. In Ligatti et al.’s paper, one such algorithm is presented and shown to have a com-

plexity of 𝑂 (𝑚𝑛) where𝑚 is the number of recursive type variables and 𝑛 is the size of the types

in the two types being compared, whichever is larger. Ligatti et al. informally argued that this

algorithm is equivalent to the complete rules, but they did not prove this result formally.

2.3 Key Ideas Towards an Efficient Algorithm
The goal of QuickSub is to design an efficient algorithm that has the same expressive power as the

Amber rules. Since Amber-style subtyping strikes a good balance between expressive power and

simplicity, and has been widely adopted, we believe having an efficient and equivalent algorithm

for the Amber rules is of practical significance.

In the rest of this section, we introduce the key design ideas behind the QuickSub algorithm with

two goals in mind: being efficient to implement, while also being equivalent in terms of expressive

power to the Amber rules. We will use the subtyping examples in previous sections to illustrate

these key ideas. The actual final QuickSub algorithm will be introduced in Section 3, exploiting

and refining the ideas described in this section.

Tracking polarities. The first observation from the previous examples is that, if the recursive

variables all appear in positive positions, then we can just compare the recursive bodies directly.

For example, for 𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. nat → 𝛼 , we could simply compare the bodies of the recursive

types for subtyping. This can be described by the following rule:

Ψ, 𝛼 ⊢ 𝐴 ≤ 𝐵 𝛼 ∉ NegVar(𝐴, 𝐵)
Ψ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵

QS-rec-1

where NegVar(𝐴, 𝐵) is the set of negative recursive variables in 𝐴 and 𝐵. In this way, we do not

need to unfold the recursive types as in the nominal unfolding rules, and can directly compare the

bodies of the recursive types. The rule can be further optimized by collecting NegVar(𝐴, 𝐵) and
checking the inclusion of 𝛼 on the fly, as we will show in Section 3.

Tracking strict subtypes. Rule QS-rec-1 is not sufficient to handle negative recursive types. A

recursive type with negative occurrences of recursive variables, such as 𝜇𝛼. 𝛼 → nat, though not a

subtype of 𝜇𝛼. 𝛼 → ⊤, is still a subtype of itself due to reflexivity. The Amber rules deal with this

by having an extra reflexivity rule Amber-self, which is not ideal for an efficient algorithm, since

it requires backtracking. To avoid backtracking, our solution is to distinguish strict subtyping from

equivalence. This idea can be described by the following rules:

Ψ, 𝛼 ⊢ 𝐴 ⪅ 𝐵 𝛼 ∉ NegVar(𝐴, 𝐵)
Ψ ⊢ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵

QS-rec-2a

Ψ, 𝛼 ⊢ 𝐴 ≈ 𝐵 𝛼 ∈ NegVar(𝐴, 𝐵)
Ψ ⊢ 𝜇𝛼. 𝐴 ≈ 𝜇𝛼. 𝐵

QS-rec-2b

Instead of using a unified symbol ≤ to indicate successful subtype checking, the checking result is

now represented as a metavariable ⪅ ∈ {<,≈} for strict subtyping and equivalence. In other words,

we do not interpret the subtyping rules as a function that compares two types for subtyping and

returns a boolean. Instead, we would interpret subtyping as a function that compares two types

and gives us three possible results: 1) the two types are strict subtypes (<); 2) the two types are
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𝛼− ≈ 𝛼− nat < ⊤
𝛼− → nat < 𝛼− → ⊤

✗
𝜇𝛼.𝛼 → nat ≮ 𝜇𝛼.𝛼 → ⊤

causes failure

𝛼− < ⊤ 𝛼+ ≈ 𝛼+

⊤ → 𝛼+ < 𝛼− → 𝛼+
✓𝜇𝛼.⊤ → 𝛼 < 𝜇𝛼.𝛼 → 𝛼

Fig. 1. Illustration of negative recursive subtyping.

equivalent subtypes (≈); or 3) subtyping fails. Rule QS-rec-2a accepts both equivalence and strict

subtyping for positive recursive types, while rule QS-rec-2b only accepts equivalence for negative

recursive types. This way, we can avoid backtracking for reflexivity, since the choice of the rules is

deterministic based on whether 𝛼 is in NegVar(𝐴, 𝐵).
Accordingly, the subtype result needs to be tracked throughout the rules. For example, in base

cases of the inference rules we have nat ≈ nat and 𝐴 < ⊤ when 𝐴 ≠ ⊤, rather than the generic

nat ≤ nat or 𝐴 ≤ ⊤. The subtype result also needs to be propagated when combining subtyping

results. For example, the subtyping rule for function types would be:

Ψ ⊢ 𝐵1 ⪅1 𝐴1 Ψ ⊢ 𝐴2 ⪅2 𝐵2

Ψ ⊢ 𝐴1 → 𝐴2 (⪅1 • ⪅2) 𝐵1 → 𝐵2

QS-arrow-attempt

Here ⪅1 • ⪅2 is a composition function that combines the subtyping results ⪅1 and ⪅2 to a new

subtyping result. It works by checking if both subtyping results are ≈. If so, the composition

is ≈; otherwise, it is <. Tracking the equality and strict subtype information precisely in the

subtyping rules also avoids the need for running the subtyping algorithm twice as in Cardelli

[1993]’s algorithm for Amber rules.

Tracking polarity is not enough: negative variables meet ⊤ types. The rules QS-rec-2a and QS-

rec-2b, however, still miss some subtyping relations that are valid in the Amber rules. Consider

𝜇𝛼. ⊤ → 𝛼 ≤ 𝜇𝛼. 𝛼 → 𝛼 , which is a valid subtyping statement. This statement is not covered

by the rules we have proposed so far, as the recursive variable 𝛼 appears negatively. In a richer

subtyping relation there might be more types other than ⊤ to be considered. For example, in the

presence of bottom types ⊥, it is also possible to have 𝜇𝛼.𝛼 → 𝛼 <: 𝜇𝛼.⊥ → 𝛼 . With intersection

types, denoted as 𝐴 & 𝐵 for intersecting 𝐴 and 𝐵, we may also have 𝜇𝛼.(⊤&⊤) → 𝛼 <: 𝜇𝛼.𝛼 → 𝛼 .

To achieve a general solution to negative recursive subtyping, it is not effective to just identify

those special cases and come up with ad-hoc rules to include them into the subtyping relation.

To have a solution that can scale up and be able to deal with other features that can make the

situation even more complicated, we need to look deep into the reason why negative recursive

subtyping prevents certain subtyping relations. A key observation in QuickSub is that: if the

recursive variable appears at a negative position and is compared with another recursive variable,
then the only supertype for its corresponding recursive type is itself and ⊤.
We illustrate this idea in Figure 1. We use superscripts to indicate the polarity of the recursive

variables. For example, in comparing the recursive bodies of 𝜇𝛼. 𝛼 → nat ≰ 𝜇𝛼. 𝛼 → ⊤, the
recursive variable 𝛼 is compared to itself at a negative position, so 𝛼−

will generate an equality

constraint that the recursive type must be equivalent to itself. In contrast, in the second example,

𝛼−
is compared with ⊤ instead of another recursive variable, so it is allowed for the recursive

type to be in a strict subtyping relation. We call the collection of such variables that are compared

with another recursive variable negatively the equality variable set, since they essentially pose a

constraint on the subtyping derivation that certain recursive types must be equivalent. By refining

the NegVar function in rules QS-rec-2a and QS-rec-2b to collect only the equality variable sets,

the negative recursive subtyping problem can be handled effectively, as we will detail in Section 3.
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Ψ ⊢⊕ 𝐴 ⪅ 𝐵 (QuickSub Subtyping)

QS-nat

Ψ ⊢⊕ nat ≈∅ nat

QS-topeq

Ψ ⊢⊕ ⊤ ≈∅ ⊤

QS-toplt

A ≠ ⊤
Ψ ⊢⊕ A < ⊤

QS-varpos

𝛼⊕ ∈ Ψ

Ψ ⊢⊕ 𝛼 ≈∅ 𝛼

QS-varneg

𝛼⊕ ∈ Ψ

Ψ ⊢⊕ 𝛼 ≈{𝛼 } 𝛼

QS-reclt

Ψ, 𝛼⊕ ⊢⊕ A1 < A2

Ψ ⊢⊕ 𝜇𝛼. A1 < 𝜇𝛼. A2

QS-receq

Ψ, 𝛼⊕ ⊢⊕ A1 ≈𝑆 A2 𝛼 ∉ 𝑆

Ψ ⊢⊕ 𝜇𝛼. A1 ≈𝑆 𝜇𝛼. A2

QS-receqin

Ψ, 𝛼⊕ ⊢⊕ A1 ≈𝑆 A2 𝛼 ∈ 𝑆

Ψ ⊢⊕ 𝜇𝛼. A1 ≈( (𝑆∪FV(A1 ) )\{𝛼 }) 𝜇𝛼. A2

QS-arrow

Ψ ⊢⊕ A2 ⪅1 A1 Ψ ⊢⊕ B1 ⪅2 B2
Ψ ⊢⊕ A1 → A2 (⪅1 • ⪅2) B1 → B2

≈𝑆1 • ≈𝑆2 = ≈𝑆1∪𝑆2 ≈∅ • < = <

< • < = < < • ≈∅ = <

Fig. 2. The QuickSub subtyping rules.

3 Efficient Subtyping Algorithm
In this section, we work with a minimal set of types to explain the key idea of QuickSub. The
syntax of types, as well as other constructs used in the subtyping algorithm, is:

Types 𝐴, 𝐵 F nat | ⊤ | 𝐴1 → 𝐴2 | 𝛼 | 𝜇𝛼. 𝐴
Subtyping results ⪅ F < | ≈𝑆

Polarity modes ⊕ F + | −
Subtyping contexts Ψ F · | Ψ, 𝛼⊕

Equality variable sets 𝑆 F ∅ | {𝛼1, . . . , 𝛼𝑛}
Meta-variables 𝐴, 𝐵 range over types. Types include base types (nat), the top type (⊤), function
types (𝐴1 → 𝐴2), type variables (𝛼), and recursive types (𝜇𝛼. 𝐴). We will explain other constructs

in the syntax when they are introduced in the rules.

3.1 QuickSub Subtyping
Figure 2 presents the QuickSub algorithm as syntax-directed inference rules. The subtyping judge-

ment Ψ ⊢⊕ 𝐴 ⪅ 𝐵 determines whether type 𝐴 is a subtype of type 𝐵 under the context Ψ,
parameterized by a polarity mode ⊕ ∈ {+,−}. The notation that we employ is similar to conven-

tional subtyping. However, ⪅ is not simply a piece of notation, but instead it is a parameter of

the relation. Moreover, when interpreted algorithmically, this parameter is an output result. The
output result ⪅ ∈ {<,≈𝑆 } is a metavariable ranging over two possibilities: strict subtypes (<) and

or equivalent types (≈𝑆 ). The equivalent result also carries an equality variable set 𝑆 , which tracks

a set of variables used to check equality constraints during subtyping. Tracking the subtype results

and the equality variable sets are key ingredients to the design of our efficient algorithm.

Subtyping base types. Base types nat and⊤ are equal to themselves (rules QS-nat and QS-topeq),

while types that are not equal to the ⊤ type are strict subtypes of ⊤ (rule QS-toplt). Since there

are no common free variables in base types, in rules QS-nat and QS-topeq the equality variable

set is empty, as indicated by the subscript ≈∅ .

Tracking negative recursive variables. As briefly mentioned in Section 2.3, QuickSub uses the

equality variable set to track those negative variables that pose an equality constraint on the
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recursive types. To make QuickSub efficient, the equality variable set 𝑆 is collected dynamically

in the subtyping derivation. Since the equality variable sets are only used to represent equality

constraints, when the subtyping result is strict subtyping, the algorithm can fail immediately, so

they are only tracked as part of the equality result, which we denote as ≈𝑆 . When the rules are

interpreted as an algorithm, the equality variable set is also part of the output result.

Specifically, the equality variable set for two types in a subtyping relation is the set of those

variables that are compared with themselves in a negative position of their recursive bodies, as

spotted by the rule QS-varneg. When the variables are compared in a positive position, they are

not included in the set, as indicated by rule QS-varpos. For example, in the first example of Figure 1,

the variable 𝛼 appears negatively in both 𝜇𝛼. 𝛼 → nat and 𝜇𝛼. 𝛼 → ⊤, so that rule QS-varneg is

used and returns 𝛼+ ⊢− 𝛼 ≈{𝛼 } 𝛼 , assuming the initial polarity mode is positive. In contrast, in the

second example 𝜇𝛼. ⊤ → 𝛼 < 𝜇𝛼. 𝛼 → 𝛼 , of Figure 1, the variable 𝛼 is either compared with a top

type or appears positively in the recursive type, so that no equality constraints are generated.

𝛼+ ⊢− 𝛼 < ⊤ (by QS-toplt) and 𝛼+ ⊢+ 𝛼 ≈∅ 𝛼 (by QS-varpos)

Subtyping function types. The equality variable set becomes useful in rule QS-arrow. We present

the full definition of function • at the bottom of Figure 2. This definition extends the subtyping

result composition function, informally introduced in Section 2.3, to include the equality variable

set. The function is partial and for those cases where the composition is undefined, the subtyping

checking will fail. Basically there are two cases when • returns a valid result: (1) When both

subtyping statements are equality (≈), the output mode is also equality, and the equality variable

set is the union of the two sets; (2) When one of the subtyping statements returns a strict subtype

result (<), the output result must also be strict, and it is required that the equality variable set for

the other subtyping statement is empty. In other words, a non-empty equality variable set indicates

that the types they are related to cannot be composed with strict subtyping counterparts, as we

will show in the example below. When the subtyping result is strict, the equality variable set must

be empty for the composition to be valid.

Continuing with the example 𝜇𝛼. 𝛼 → nat ≰ 𝜇𝛼. 𝛼 → ⊤ in Figure 1, we wish to detect at

an early stage that the negative variable 𝛼 makes subtyping fail. Unlike using substitution (as

in the nominal unfolding) or other techniques, QuickSub traverses the types only once without
substitutions. The two subtyping premises in the rule QS-arrow are

𝛼+ ⊢− 𝛼 ≈{𝛼 } 𝛼 𝛼+ ⊢+ nat < ⊤ (1)

However, the composition of the two subtyping statements ≈{𝛼 } • < is undefined, which makes the

subtyping statement fail. This indicates that the negative variable 𝛼 requires an equality constraint

on all the types it appears in, which contradicts the strict subtyping result given by the second

premise. We will reason about the correctness of the • function formally in Section 3.2.

Subtyping recursive types. The rules QS-reclt, QS-receq, and QS-receqin are the most inter-

esting rules in the algorithm. All three rules start by comparing the recursive body of the two

types in the current context extended by a binding that maps the current recursive variable to the

current polarity mode, as can be seen from the first premise. Based on the result of subtyping the

two recursive type bodies, different rules are chosen. If the subtyping result is strict, the subtyping

result in the conclusion is also strict (rule QS-reclt). If the subtyping result is equivalent and the

recursive variable 𝛼 is not in the equality variable set, the subtyping result in the conclusion is

also equivalent. Moreover the equality variable set is propagated through (rule QS-receq). In this

case, there are no constraints on the recursive variable. The presence of the recursive variable in

the set, indicates that there is an equality constraint on the variable. Thus, the recursive bodies of
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the two types must be equivalent (rule QS-receqin). In this case, the update of the variable set is

more complicated. The free variables in the recursive body are first included, and then the current

recursive binder variable is excluded since it is no longer a free variable in the recursive type. The

reason why the free variables FV(𝐴1) are included is related to nested recursive types. To illustrate

this, recall the example for nested recursive types:

𝜇𝛽. ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≰ 𝜇𝛽. nat → (𝜇𝛼. 𝛼 → 𝛽)
Variable 𝛽 causes the subtyping statement fail, since it can appear negatively after unfolding the

inner recursive type 𝜇𝛼. 𝛼 → 𝛽 twice. This can be seen from the following derivation in QuickSub:

QS-toplt

𝛽+ ⊢− nat < ⊤

QS-varneg

𝛽+, 𝛼+ ⊢− 𝛼 ≈{𝛼 } 𝛼
QS-varpos

𝛽+, 𝛼+ ⊢+ 𝛽 ≈∅ 𝛽
QS-arrow

𝛽+, 𝛼+ ⊢+ 𝛼 → 𝛽 ≈{𝛼 } 𝛼 → 𝛽 𝛼 ∈ {𝛼}
QS-receqin

𝛽+ ⊢+ 𝜇𝛼. 𝛼 → 𝛽 ≈{𝛽 } 𝜇𝛼. 𝛼 → 𝛽

QS-arrow ✗
𝛽+ ⊢+ ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≰ nat → (𝜇𝛼. 𝛼 → 𝛽)

QS-rec. . .

· ⊢+ 𝜇𝛽. ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≰ 𝜇𝛽. nat → (𝜇𝛼. 𝛼 → 𝛽)
As we highlight in the derivation, the subtyping judgement fails due to the undefined composition

< • ≈{𝛽 } in the rule QS-arrow rule. The failure can be further traced back to the ≈{𝛽 } result
after applying the rule QS-receqin rule. Note that the equality variable set {𝛽} is computed from

({𝛼} ∪ FV(𝛼 → 𝛽))\{𝛼}, where FV(𝛼 → 𝛽) = {𝛼, 𝛽}. Without the union of FV(𝐴1) in rule QS-

receqin, the subtyping derivation above would have succeeded since the inner recursive type

𝜇𝛼. 𝛼 → 𝛽 would return ≈∅ and the composition in rule QS-arrow would be valid.

On the other hand, 𝜇𝛼. 𝛼 → 𝛽 is equivalent to itself, so it is not feasible to reject this subtyping

statement at a stage when only the 𝜇𝛼. 𝛼 → 𝛽 part is compared. The subtyping will fail only when

𝜇𝛼. 𝛼 → 𝛽 is composed with other strict subtypes, which is the case above. Nonetheless, we still

expect the following equivalent subtyping statement to succeed:

QS-topeq

𝛽+ ⊢− ⊤∅ ≈ ⊤
. . .

𝛽+ ⊢+ 𝜇𝛼. 𝛼 → 𝛽 ≈{𝛽 } 𝜇𝛼. 𝛼 → 𝛽 ≈∅ • ≈{𝛽 } = ≈{𝛽 }
QS-arrow

𝛽+ ⊢+ ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≈{𝛽 } ⊤ → (𝜇𝛼. 𝛼 → 𝛽) 𝛽 ∈ {𝛽}
QS-receqin

· ⊢+ 𝜇𝛽. ⊤ → (𝜇𝛼. 𝛼 → 𝛽) ≈∅ 𝜇𝛽. ⊤ → (𝜇𝛼. 𝛼 → 𝛽)
Therefore, we still allow equivalent recursive types with negative variables to be subtypes of each

other, as described in rule QS-receqin. However, we refine the equality variable set so that the

variables in negative positions can be precisely tracked, and leave the rejection of strict subtyping

to the composition stage in rule QS-arrow. Overall, the interaction between the equality variable

set and the subtyping composition function • leads to an efficient algorithm that can handle all

iso-recursive subtyping cases effectively.

Analysis of the algorithm performance. For the rules in Figure 2 to be an algorithm, the context Ψ,
types𝐴, 𝐵 and polarity mode ⊕ are considered as inputs, and the subtyping result ⪅ is the output of

the algorithm. Since the inference rules only describe the successful cases, the algorithm is defined

as a partial function and returns a false result indicating non-subtypes when no rules are applicable.

It can be verified that the rules are structurally recursive on the types, and that the size of the inputs

will decrease strictly on every recursive call. As a result, the problem of exponential blowup as

seen in nominal unfolding rules does not exist. Moreover, the choice of the rules is deterministic.
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For example, the choice of rules QS-reclt, QS-receq, and QS-receqin is decided by the result of

subtyping for the recursive bodies. Because of the side conditions checking whether the current

recursive binder variable is in the equality variable set, there are no performance costs due to

backtracking between different inference rules as seen in the Amber rules.

Despite these optimizations, there is still a performance bottleneck in rule QS-receqin of the

algorithm when it is repeatedly called on nested recursive types. As we described earlier, the

equality variable set 𝑆 is updated by including the free variables of the recursive body and excluding

the current recursive binder variable. Computing the free variables and the set union operation

can be costly in the worst case. However, this can be optimized by collecting the free variables on

the fly and using efficient data structures for set operations. As we will see in Section 5, by using

imperative boolean arrays to represent the equality variable set in the QuickSub implementation,

the time complexity of set union operation is linear with respect to the number of variables in

the set, which in the worst case is the total number of recursive variables 𝑛 in the type. Therefore,

assuming the size of the type is𝑚, the worst case complexity of the algorithm is 𝑂 (𝑚𝑛), which
remains the same as the complexity of Ligatti et al.’s ML implementation for complete iso-recursive

subtyping.

Compared to the nominal rules or the Amber rules, our QuickSub algorithm is more efficient in

terms of complexity. The nominal rules have exponential complexity due to the use of substitution

for unfolding. Similarly, the Amber rules, also have an exponential complexity on the depth of

recursive variables due to a non-deterministic choice of rules for subtyping recursive types, and

possibly extra overhead of variable renaming. Another point to note is that the 𝑂 (𝑚𝑛) complexity

is worst case complexity. In practice it is not common to have a large number of negative appearing

variables in a type, since these types easily tend make the subtyping judgement fail as we have

shown in the examples above. As we will show in Section 5, for practical subtype checking tasks,

our algorithm is already efficient to use and scales well to large recursive types, outperforming the

other formulations of recursive subtyping.

3.2 Correctness
To prove the correctness of the algorithm we show that QuickSub is equivalent to the Amber rules

for iso-recursive subtyping and other equivalent variants defined in previous work. Among these

variants we find the weakly positive subtyping rules [Zhou et al. 2022b] most convenient to develop

an equivalence proof with QuickSub. The weakly positive subtyping rules were originally proposed
as an intermediate step to prove the equivalence between the nominal unfolding rules and the

Amber rules. Zhou et al. [2022b] have shown that all the three sets of rules are equivalent to each

other. Therefore, by proving the equivalence between QuickSub and the weakly positive subtyping

rules, we can establish the equivalence between QuickSub and all of these variants.

Weakly positive subtyping rules. We present the weakly positive subtyping rules by Zhou et al.

[2022b] in Figure 3. The rules have two components: weakly positive restriction 𝛼 ∈⊕ 𝐴 ≤ 𝐵 and

weakly positive subtyping Γ ⊢𝑝 𝐴 ≤ 𝐵.

The subtyping part is mostly structural. Rule PosRes-rec compares two recursive types by

structurally checking the recursive body, but requires that the recursive variable 𝛼 satisfies the

weakly positive restriction 𝛼 ∈+ 𝐴 ≤ 𝐵. As we shall explain later, the weakly positive restriction

considers more carefully the polarity of the type variable 𝛼 than standard formulations of positive

subtyping [Amadio and Cardelli 1993]. For recursive types that satisfy such restriction, the subtyping

can be checked simply by comparing the recursive bodies. There is also a built-in reflexivity

rule PosRes-self for comparing negative equivalent recursive types, for a similar reason to that

already discussed for the Amber rules.
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𝛼 ∈⊕ 𝐴 ≤ 𝐵 (Weakly Positive Restriction)

Posvar-nat

𝛼 ∈⊕ nat ≤ nat

Posvar-topl

𝛼 ∈⊕ A ≤ ⊤

Posvar-topr

𝛼 ∈⊕ ⊤ ≤ A

Posvar-arrow

𝛼 ∈⊕ B1 ≤ A1 𝛼 ∈⊕ A2 ≤ B2
𝛼 ∈⊕ A1 → A2 ≤ B1 → B2

Posvar-varx

𝛼 ∈+ 𝛼 ≤ 𝛼

Posvar-vary

𝛼 ≠ 𝛽

𝛼 ∈⊕ 𝛽 ≤ 𝛽

Posvar-recself

𝛼 ∉ 𝑓 𝑣 (A)
𝛼 ∈⊕ 𝜇𝛽. A ≤ 𝜇𝛽. A

Posvar-rec

𝛼 ∈⊕ A ≤ B 𝛽 ∈+ A ≤ B 𝛼 ≠ 𝛽

𝛼 ∈⊕ 𝜇𝛽. A ≤ 𝜇𝛽. B

Γ ⊢𝑝 𝐴 ≤ 𝐵 (Weakly Positive Subtyping)

PosRes-nat

⊢ Γ

Γ ⊢𝑝 nat ≤ nat

PosRes-top

⊢ Γ Γ ⊢ A
Γ ⊢𝑝 A ≤ ⊤

PosRes-var

⊢ Γ 𝛼 ∈ Γ

Γ ⊢𝑝 𝛼 ≤ 𝛼

PosRes-arrow

Γ ⊢𝑝 B1 ≤ A1 Γ ⊢𝑝 A2 ≤ B2
Γ ⊢𝑝 A1 → A2 ≤ B1 → B2

PosRes-rec

Γ, 𝛼 ⊢𝑝 A ≤ B 𝛼 ∈+ A ≤ B

Γ ⊢𝑝 𝜇𝛼. A ≤ 𝜇𝛼. B

PosRes-self

⊢ Γ Γ ⊢ 𝜇𝛼. A

Γ ⊢𝑝 𝜇𝛼. A ≤ 𝜇𝛼. A

Fig. 3. Weakly Positive Subtyping Rules.

The weakly positive restriction describes whether a type variable 𝛼 occurs in a derivation of

𝐴 ≤ 𝐵 with a specific polarity ⊕ (either positive or negative). This relation ensures that given

a variable 𝛼 in question, every instance of 𝛼 ≤ 𝛼 in the derivation of 𝐴 ≤ 𝐵 only occurs in a

positive position (rule Posvar-varx), so that invalid contravariant subderivations are prevented.

For recursive types, the weakly positive restriction is satisfied in two cases: either the recursive

bodies are equal and 𝛼 is not free in 𝜇𝛽. 𝐴 (rule Posvar-recself), or the recursive variable 𝛽 is

found in a weakly positive position inside the proof and 𝛼 satisfies the weakly positive restriction

in the recursive bodies (rule Posvar-rec).

To see why rule Posvar-rec needs the second condition, consider the following example:

𝛽 ∈+ 𝜇𝛼. 𝛼 → 𝛽 ≤ 𝜇𝛼. 𝛼 → 𝛽

which will be rejected by both rules Posvar-recself and Posvar-rec, since 𝛽 ∈ FV(𝛼 → 𝛽) and
𝛼 ∈+ 𝛼 → 𝛽 ≤ 𝛼 → 𝛽 is not derivable. Otherwise, unfolding the recursive type would lead to

𝛽 ∈+ ((𝜇𝛼. 𝛼 → 𝛽) → 𝛽 ) → 𝛽 ≤ ((𝜇𝛼. 𝛼 → 𝛽) → 𝛽 ) → 𝛽

with a negative subderivation 𝛽 ∈− 𝛽 ≤ 𝛽 , which leads to an inconsistency in the rules. Overall,

the weakly positive subtyping restriction, as well as the subtyping rules ensures that iso-recursive

subtyping is correctly handled. For a detailed discussion on the weakly positive subtyping rules,

we refer the readers to Zhou et al.’s work.

Relating QuickSub to the weakly positive restriction. The weakly positive restriction provides a

way to formally reason about the equality variable sets in QuickSub. Indeed, we can show that the

QuickSub context Ψ captures the weakly positive information of all the variables in the context.
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Depending on whether the variable 𝛼⊕′ ∈ Ψ has the same polarity as the polarity ⊕ of the current

subtyping judgment, we can determine whether 𝛼 appears weakly positively or negatively in the

two types 𝐴 and 𝐵, as described in the following theorems.

Theorem 3.1 (Relation to weakly positive restrictions (strict subtyping)). If Ψ ⊢⊕ 𝐴 < 𝐵, then

(1) 𝛼⊕ ∈ Ψ implies 𝛼 ∈+ 𝐴 ≤ 𝐵

(2) 𝛼⊕ ∈ Ψ implies 𝛼 ∈− 𝐴 ≤ 𝐵

This also holds for the case of ≈𝑆 , but only in the case where the variable 𝛼 is not in the equality

variable set 𝑆 . When 𝛼 ∈ 𝑆 , indicating there is a negative equality 𝛼 ≤ 𝛼 in the derivation of 𝐴 ≈ 𝐵

(see rule QS-varneg), the weakly positive restriction no longer holds. Note that we use ∉⊕ to denote

the logical negation of ∈⊕ , and that ∉+ is not equivalent to ∈− .

Theorem 3.2 (Relation to weakly positive restrictions (equivalence)). If Ψ ⊢⊕ 𝐴 ≈𝑆 𝐵, then

(1) 𝛼⊕ ∈ Ψ and 𝛼 ∉ 𝑆 implies 𝛼 ∈+ 𝐴 ≤ 𝐵

(2) 𝛼⊕ ∈ Ψ and 𝛼 ∉ 𝑆 implies 𝛼 ∈− 𝐴 ≤ 𝐵

(3) 𝛼⊕ ∈ Ψ and 𝛼 ∈ 𝑆 implies 𝛼 ∉+ 𝐴 ≤ 𝐵

(4) 𝛼⊕ ∈ Ψ and 𝛼 ∈ 𝑆 implies 𝛼 ∉− 𝐴 ≤ 𝐵

For the sake of completeness we also prove a theorem for the case when 𝛼 is a fresh variable that

does not appear in Ψ. In this case, it is guaranteed that 𝛼 appears weakly positively and negatively

in the subtyping judgment 𝐴 ≤ 𝐵.

Theorem 3.3 (Relation to weakly positive restrictions (fresh variables)). If Ψ ⊢⊕ 𝐴 ⪅ 𝐵, then for any

𝛼 ∉ dom Ψ and any polarity ⊕′
, 𝛼 ∈⊕′ 𝐴 ≤ 𝐵.

Soundness of QuickSub to weakly positive subtyping. We can now show that the QuickSub rules

are sound with respect to the weakly positive subtyping rules.

Theorem 3.4 (Soundness of QuickSub to Weakly Positive Subtyping). If Ψ ⊢⊕ 𝐴 ⪅ 𝐵, then |Ψ| ⊢𝑝
𝐴 ≤ 𝐵, where |Ψ| removes all the polarity annotations from the context Ψ.

The proof is straightforward by induction on the derivation of Ψ ⊢⊕ 𝐴 ⪅ 𝐵. Most of the cases

are direct by induction hypotheses, except for the recursive type cases Ψ ⊢⊕ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵. For

case QS-reclt and QS-receq, by Theorem 3.1 (1) and Theorem 3.2 (1), we know that 𝛼 ∈+ 𝐴 ≤ 𝐵,

so that rule PosRes-rec can be applied. For case QS-receqin, by Theorem 3.5 the two recursive

types are equal, so that we can apply the rule PosRes-self to complete the proof. The proof of

Theorem 3.5 is straightforward by induction on the subtyping derivation.

Theorem 3.5 (QuickSub equivalence implies equality). If Ψ ⊢⊕ 𝐴 ≈𝑆 𝐵, then 𝐴 = 𝐵.

Completeness of QuickSub to weakly positive subtyping. We wish to prove the following theorem

to show that QuickSub is complete with respect to the weakly positive subtyping rules:

Theorem 3.6 (Completeness of QuickSub). If · ⊢𝑝 𝐴 ≤ 𝐵, then there exists ⪅, such that · ⊢+ 𝐴 ⪅ 𝐵.

The proof of Theorem 3.6 is not straightforward by induction, as the empty context · needs to be
generalized to handle recursive cases. However, the context cannot be generalized arbitrarily. For

example, consider the weakly positive subtyping judgment 𝛼 ⊢𝑝 𝛼 → nat ≤ 𝛼 → ⊤. Annotating 𝛼
with positive polarity leads to an invalid judgment in QuickSub:

𝛼+ ⊢− 𝛼 ≈{𝛼 } 𝛼 𝛼+ ⊢+ nat < ⊤
𝛼+ ⊢+ 𝛼 → nat ≮ 𝛼 → ⊤ QS-arrow✗
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QuickSub
Weakly Positive

Subtyping

Nominal Unfolding

Rules

Amber Rules

This paper Zhou et al. [2022b]’s work

sound

complete

sound

complete

sound & complete

✓ Type soundness

• Transitivity

• Unfolding lemma

• Progress

• Preservation

• . . .

Fig. 4. Type soundness proof framework for QuickSub, indirectly.

This suggests that in the generalized lemma we need to specify how the weakly positive subtyping

context Γ, that only contains variables, is related to the QuickSub context Ψ in the conclusion,

which also assigns polarities to variables. To this end we define a restriction well bound context
to ensure that all the variables in the context Ψ are consistent with the polarity of the subtyping

judgment up to the weakly positive restriction, so that the context can be safely generalized.

Definition 3.7 (Well bound context). A context Ψ is well bound with respect to a polarity ⊕ and

two types 𝐴 and 𝐵, denoted as Ψ ∈⊕ 𝐴 ≤ 𝐵, if for any 𝛼⊕′ ∈ Ψ, 𝛼 ∈⊕′+⊕ 𝐴 ≤ 𝐵, where ⊕′ + ⊕ is + if

⊕′
and ⊕ are the same, and − otherwise.

The generalized lemma is then stated as follows:

Lemma 3.8 (Generalized completeness of QuickSub). If Γ ⊢𝑝 𝐴 ≤ 𝐵, and there exists Ψ such that

dom Γ = dom Ψ, and Ψ ∈⊕ 𝐴 ≤ 𝐵, then there exists ⪅, such that Ψ ⊢+ 𝐴 ⪅ 𝐵.

The proof of the generalized lemma is by induction on the derivation of Γ ⊢𝑝 𝐴 ≤ 𝐵. Most of the

cases follow the induction hypotheses directly. In the cases for recursive types we need to show that

the extended context (Ψ, 𝛼⊕) is well bound, which is guaranteed by the weakly positive conditions

in the weakly positive subtyping premise. The most interesting case is the PosRes-arrow case,

in which we get two QuickSub results 𝐵1 ⪅1 𝐴1 and 𝐵2 ⪅2 𝐴2 from the induction hypothesis. We

need to show that ⪅1 • ⪅2 does not cause trouble so that rule QS-arrow can be applied. Thanks to

the well bound context restriction, those cases where ⪅1 • ⪅2 are undefined can be ruled out by

contradiction. We refer the reader to the Coq formalization for the detailed proof.

3.3 Direct Proof of Type Soundness
We have shown that QuickSub is equivalent to the weakly positive subtyping rules in the previous

section. Since Zhou et al. [2022b] have proven that the weakly positive subtyping rules are sound

and complete to the nominal unfolding rules, and that the nominal unfolding rules are type sound,

we can conclude that QuickSub is also type sound. This proof is illustrated in Figure 4, which we

refer to as an indirect proof of type soundness, as the proof relies on the development of other

equivalent subtyping rules. In this section we provide a direct proof of type soundness for QuickSub.

Why a direct proof? While the indirect proof shown in Figure 4 has effectively established

type soundness by linking QuickSub to established rules, there are strong reasons to also study a

direct proof for QuickSub. Firstly, proving type soundness via equivalence to other rules involves

significant additional complexity. This can be observed by the fact that useful properties of the
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Amber rules that contribute to type soundness, such as transitivity of subtyping and unfolding

lemma, which we will state shortly, are proven indirectly by showing their equivalence to the

nominal unfolding rules [Zhou et al. 2022b]. Whether there exists a direct proof for other equivalent

rules is not clear. It is also non-trivial to prove the equivalence between various iso-recursive

subtyping rules without going through an intermediate equivalent system that is carefully defined

for the purpose of proving equivalence, such as the weakly positive subtyping rules. Each of the six

soundness or completeness proofs in Figure 4 requires significant reasoning and many auxiliary

lemmas. Therefore, although only two soundness and completeness proofs highlighted in gray in

Figure 4 are needed to prove type soundness for QuickSub, the overall proof framework still has a

high level of complexity.

Moreover, having a direct proof makes QuickSub easier to extend in the future with new features.

If all we cared were the features that are already present in Zhou et al. [2022b]’s work, then an

indirect proof framework like Figure 4 would be sufficient. However, most of the time one would

like to study iso-recursive subtyping with other features, such as records, polymorphism, bounded

quantification [Zhou et al. 2023], and intersection [Zhou et al. 2022a] or union types. In this case, if

one wants to add new features to QuickSub using an indirect proof, it would require modifying the

underlying systems, proving type soundness within those systems, and updating the equivalence

proofs. As there are many complexities involved in all these steps, this would be a large burden. In

contrast, with a direct type soundness proof, each new feature can be added and assessed for type

soundness in isolation, simplifying the proof development process considerably.

A calculus with iso-recursive types and QuickSub subtyping. We develop a simple calculus to

show how a direct proof of type soundness can be developed for QuickSub. The syntax, typing
rules and reduction rules are presented in Figure 5. Meta-variables 𝑒 range over expressions,

with conventional syntax for variables (𝑥), integers (n), applications (𝑒1 𝑒2), lambda abstractions

(𝜆𝑥 : 𝐴. 𝑒), unfolding (unfold [𝐴] 𝑒) and folding (fold [𝐴] 𝑒) expressions for iso-recursive types.
The typing rules are standard. For base cases ⊢ Γ checks the well-formedness of the context

Γ, which requires that all the variable types in the context are well-formed. A fold expression

constructs a recursive type (rule Typing-fold), while an unfold expression opens a recursive type

to its unfolding (rule Typing-unfold). One specialized rule is the subsumption rule Typing-sub,

which calls QuickSubwith an empty context · and positive polarity + to check the subtyping relation

between types 𝐴 and 𝐵. Both strict subtyping and equivalence are accepted in the subsumption

rule.

The reduction rules for the calculus are also standard. In rules step-fold and step-unfold the

expressions inside the fold and unfold constructs are reduced until they reach a value. The fold
of values are treated as values, while for unfold expressions with fold values, the rule step-fld is

applied to eliminate the pair of annotations.

Unfolding lemma. We prove the type soundness of the calculus using progress and preservation.

As identified by previous works on iso-recursive subtyping [Ligatti et al. 2017; Zhou et al. 2022b]

the key to the type soundness proof is the unfolding lemma:

Lemma 3.9 (Unfolding lemma). If · ⊢+ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵, then · ⊢+ 𝐴[𝛼 ↦→ 𝜇𝛼. 𝐴] ⪅ 𝐵 [𝛼 ↦→ 𝜇𝛼. 𝐵]

The unfolding lemma ensures the preservation property for iso-recursive typing in the presence of

subtyping. To illustrate this, consider an expression unfold [𝜇𝛼. 𝐵] (fold [𝜇𝛼. 𝐴] 𝑣). The derivation
below shows the typing of this expression.
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Expressions 𝑒 F 𝑥 | n | 𝑒1 𝑒2 | 𝜆𝑥 : 𝐴. 𝑒 | unfold [𝐴] 𝑒 | fold [𝐴] 𝑒
Values 𝑣 F n | 𝜆𝑥 : 𝐴. 𝑒 | fold [𝐴] 𝑣
Typing Contexts Γ F · | Γ, 𝑥 : 𝐴

Γ ⊢ 𝑒 : 𝐴 (Typing)
typing-nat

⊢ Γ

Γ ⊢ i : nat

typing-var

⊢ Γ 𝑥 : 𝐴 ∈ Γ

Γ ⊢ x : A

typing-app

Γ ⊢ e1 : A1 → A2 Γ ⊢ e2 : A1

Γ ⊢ e1 e2 : A2

typing-abs

Γ, 𝑥 : A1 ⊢ e : A2

Γ ⊢ 𝜆x : A1. e : A1 → A2

typing-fold

Γ ⊢ e : [𝛼 ↦→ 𝜇𝛼. A] A
Γ ⊢ fold [𝜇𝛼. A] e : 𝜇𝛼. A

typing-unfold

Γ ⊢ e : 𝜇𝛼. A
Γ ⊢ unfold [𝜇𝛼. A] e : [𝛼 ↦→ 𝜇𝛼. A] A

typing-sub

Γ ⊢ e : A · ⊢+ A ⪅ B

Γ ⊢ e : B

𝑒1 ↩→ 𝑒2 (Reduction)

step-beta

(𝜆x : A. e1) v2 ↩→ [𝑥 ↦→ v2] e1

step-appl

e1 ↩→ e′
1

e1 e2 ↩→ e′
1
e2

step-appr

e2 ↩→ e′
2

v1 e2 ↩→ v1 e′2

step-fld

unfold [A] (fold [B] v) ↩→ v

step-unfold

e ↩→ e′

unfold [A] e ↩→ unfold [A] e′

step-fold

e ↩→ e′

fold [A] e ↩→ fold [A] e′

Fig. 5. Typing and Reduction Rules.

· ⊢ 𝑣 : 𝐴[𝛼 ↦→ 𝜇𝛼. 𝐴] . . .
Typing-fold · ⊢ fold [𝜇𝛼. 𝐴] 𝑣 : 𝜇𝛼. 𝐴 · ⊢+ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵

Typing-sub · ⊢ fold [𝜇𝛼. 𝐴] 𝑣 : 𝜇𝛼. 𝐵 . . .
Typing-unfold · ⊢ unfold [𝜇𝛼. 𝐵] (fold [𝜇𝛼. 𝐴] 𝑣) : 𝐵 [𝛼 ↦→ 𝜇𝛼. 𝐵]

By inversion we know that after reduction using rule step-fld, the result 𝑣 has the type 𝐴[𝛼 ↦→
𝜇𝛼. 𝐴], and that 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵. To prove preservation that 𝑣 has the type 𝐵 [𝛼 ↦→ 𝜇𝛼. 𝐵] after
reduction, the unfolding lemma is necessary.

The unfolding lemma is proved as a corollary of the generalized lemma below:

Lemma 3.10 (Generalized unfolding lemma). If Ψ2 ⊢⊕ 𝐶 ⪅1 𝐷 , then

(1) Ψ1, 𝛼
⊕,Ψ2 ⊢⊕ 𝐴 ⪅2 𝐵 and Ψ1, 𝛼

⊕,Ψ2 ∈⊕ 𝐴 ≤ 𝐵 implies that

there exists ⪅′, such that Ψ1,Ψ2 ⊢⊕ 𝐴[𝛼 ↦→ 𝐶] ⪅′ 𝐵 [𝛼 ↦→ 𝐷].
(2) Ψ1, 𝛼

⊕,Ψ2 ⊢⊕ 𝐴 ⪅2 𝐵 and Ψ1, 𝛼
⊕,Ψ2 ∈⊕ 𝐴 ≤ 𝐵 implies that

there exists ⪅′, such that Ψ1,Ψ2 ⊢⊕ 𝐴[𝛼 ↦→ 𝐷] ⪅′ 𝐵 [𝛼 ↦→ 𝐶].
The generalized unfolding lemma basically states that one can substitute variable 𝛼 in the types

𝐴 ⪅2 𝐵 in a subtyping judgment with a pair of types 𝐶 ⪅1 𝐷 that are also related by subtyping.

When the polarity of 𝛼 is consistent with the polarity of the subtyping judgment, the substitution

can be done covariantly, and contravariantly otherwise, as expressed by the two sub-cases in the

lemma. The two sub-cases need to be proved simultaneously, as in rule QS-arrow the substitution

direction may be swapped in the contravariant condition. For a similar reason as in the proof of
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the generalized completeness lemma (Lemma 3.8), we need to generalize the unfolding lemma to

a well bound context, so that problematic cases like the undefined composition ⪅1 • ⪅2 in case

QS-arrow are avoided. Note that for defining the well bound context condition, only the weakly

positive restriction (the upper part of Figure 3) is needed, not the full weakly positive subtyping

rules. With Lemma 3.10 there is no need to go through QuickSub’s soundness or completeness to

the weakly positive subtyping rules as we did in Section 3.2 for type soundness. For the detailed

proof of the generalized unfolding lemma, we refer the readers to the Coq mechanization.

Next, we show how Lemma 3.10 is used to prove the unfolding lemma. There are two cases for

the result of · ⊢+ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵. When ⪅ = <, by inversion we know 𝛼+ ⊢+ 𝐴 < 𝐵. By Theorem 3.1

we know that 𝛼 ∈+ 𝐴 ≤ 𝐵 so that the well bound context condition is satisfied. By setting Ψ1 = ·,
Ψ2 = ·, ⊕ = +, 𝐶 = 𝜇𝛼. 𝐴, 𝐷 = 𝜇𝛼. 𝐵, ⪅1 = ⪅2 = <, in Lemma 3.10, we can derive the unfolding

lemma. When ⪅=≈, we directly know that 𝐴 = 𝐵, and the unfolding lemma holds by reflexivity:

Theorem 3.11 (Reflexivity). For any closed type 𝐴, there exists 𝑆 , such that · ⊢+ 𝐴 ≈𝑆 𝐴.

Transitivity. To prove type safety directly it is also required that the subtyping relation must be

transitive. For algorithmic subtyping, transitivity is not a built-in inference rule and therefore needs

to be proved as a theorem. The proof of transitivity for the Amber rules used to be a challenging

task and required intricate proof techniques [Bengtson et al. 2011]. Zhou et al. [2022b] showed that

with the nominal unfolding rules, they can have an easy proof of transitivity. We also prove the

transitivity theorem for QuickSub directly.

Theorem 3.12 (Transitivity). If Ψ ⊢⊕ 𝐴 ⪅1 𝐵 and Ψ ⊢⊕ 𝐵 ⪅2 𝐶 , then Ψ ⊢⊕ 𝐴 (⪅1 ◦ ⪅2) 𝐶 , where
< ◦ < = <, < ◦ ≈𝑆 = <, ≈𝑆 ◦ < = <, ≈𝑆1 ◦ ≈𝑆2 = ≈𝑆1∪𝑆2

The sequential composition operator ◦ can be regarded as a total function version of the compo-

sition operator • that does not rule out the case where < is composed with ≈𝑆 where 𝑆 ≠ ∅. The
transitivity theorem is proved by induction on the intermediate type 𝐵 and then case analysis on

the two subtyping relations in the conventional way.

Type Soundness. With the unfolding lemma and the transitivity theorem for QuickSub, the type
soundness of the calculus in Figure 5 can be proved in a standard way.

Theorem 3.13 (Progress). For any expression 𝑒 and type 𝐴, if · ⊢ 𝑒 : 𝐴 then either 𝑒 is a value or

there exists an expression 𝑒′ such that 𝑒 ↩→ 𝑒′.

Theorem 3.14 (Preservation). For any expression 𝑒 and type𝐴, if · ⊢ 𝑒 : 𝐴 and 𝑒 ↩→ 𝑒′ then · ⊢ 𝑒′ : 𝐴.

4 Extension to Records
For practical uses of QuickSub, it is useful to extend the subtyping rules to features that are common

in programming languages. In this section we show how QuickSub can be extended to handle

record types with iso-recursive subtyping. We present an extension of QuickSub, which we call

QuickSub{} and show its use in a calculus with records, iso-recursive types and subtyping.

4.1 Record Subtyping
We start by revisiting the standard subtyping rules for record types [Pierce 2002], which can be

written as:

{𝑙𝑖 𝑖∈1· · ·𝑛} ⊆ {𝑘 𝑗 𝑗∈1· · ·𝑚} 𝑘 𝑗 = 𝑙𝑖 implies 𝐴 𝑗 ≤ 𝐵𝑖

{𝑘 𝑗 : 𝐴 𝑗
𝑗∈1· · ·𝑚} ≤ {𝑙𝑖 : 𝐵𝑖 𝑖∈1· · ·𝑛}

S-rcd

where {𝑙𝑖 : 𝐴𝑖
𝑖∈1· · ·𝑚} and {𝑘 𝑗 : 𝐵 𝑗

𝑗∈1· · ·𝑛} are two record types with𝑚 and 𝑛 fields respectively.

Two record types are in a subtyping relation when the fields of the right type are a subset of the

left type, and the types of the corresponding fields are subtypes.
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Ψ ⊢⊕ 𝐴 ⪅ 𝐵 (QuickSub Subtyping for Records)

QS-rcd

{𝑙𝑖 𝑖∈1· · ·𝑛} ⊆ {𝑘 𝑗 𝑗∈1· · ·𝑚} ∀𝑙𝑖 𝑖∈1· · ·𝑛 ∃𝑘 𝑗 𝑗∈1· · ·𝑚 𝑘 𝑗 = 𝑙𝑖 ∧ Ψ ⊢⊕ 𝐴 𝑗 ⪅𝑖 𝐵𝑖

Ψ ⊢⊕ {𝑘 𝑗 : A𝑗
𝑗∈1· · ·𝑚} ⪅′ {𝑙𝑖 : B𝑖 𝑖∈1· · ·𝑛}

where ⪅′=

{
⪅1 • . . . • ⪅𝑛, if {𝑙𝑖 𝑖∈1· · ·𝑛} = {𝑘 𝑗 𝑗∈1· · ·𝑚}
⪅1 • . . . • ⪅𝑛 • <, if {𝑙𝑖 𝑖∈1· · ·𝑛} ⊊ {𝑘 𝑗 𝑗∈1· · ·𝑚}

Fig. 6. The QuickSub subtyping rules for record types.

In many cases, this rule can be directly added to an existing set of inference rules for subtyping

without modifications to the existing rules, which is the case for the nominal unfolding rules in

Zhou et al. [2022b]. However, this does not work for other variants of iso-recursive subtyping

rules, such as the weakly positive subtyping rules and the Amber rules, as well as the rules for the

QuickSub algorithm. The addition of record types makes the subtyping relation non-antisymmetric.

Our solution. We follow our previous design and extend the subtyping rules to handle record

types directly, as shown in Figure 6. Similarly to the standard approach to record subtyping (rule S-

rcd), in rule QS-rcd, we also check whether the fields of the two record types are in a set inclusion

relation, and then we compute the subtyping results of all the corresponding fields as ⪅𝑖 . All the
results are then combined with the • operator, which is the same composition operator in rule QS-

arrow. When interpreted algorithmically, the second premise of the rule can be implemented by

traversing all the fields of {𝑙𝑖 : 𝐵𝑖 𝑖∈1· · ·𝑚} and looking up the corresponding field in {𝑘 𝑗 : 𝐴 𝑗
𝑗∈1· · ·𝑛}.

Assuming a proper data structure for record types, such as a hash table, or a sorted list, the cost

of record traversal should be linear to the number of fields in the record type so that the overall

complexity of QuickSub{} remains the same as QuickSub.
One key design here is that we also distinguish strict label inclusion from equivalent label sets.

When the two record types have the same set of labels, all the results can be combined directly, so

that when all the record fields have equivalent types, the two record types should be equivalent.

This is not the case when there are labels that only appear in the left type, since they prevent the

two record types from being equivalent. Therefore, the record field subtyping results should be

folded to a strict subtyping result <.

Unlike QuickSub, there is no equivalence result for QuickSub{} with respect to weakly positive

rules and the Amber rules. This is because the extension to non-antisymmetric relations for

weakly positive rules is not studied in the literature. One way to bridge this gap is to have a

direct equivalence proof for QuickSub{} with respect to nominal unfolding rules, which have been

extended with record types [Zhou et al. 2022b]. We leave this as future work.

4.2 A Calculus with QuickSub{}

Despite the lack of an equivalence result for QuickSub{} with respect to weakly positive rules and

the Amber rules, we can still show that QuickSub{} is type sound, since the type soundness proof
we have developed in Section 3.3 does not rely on other subtyping rules. We present a calculus with

QuickSub{} in Figure 7, which extends the calculus in Figure 5 with expressions. The expression

syntax is extended with record expressions and record projections, as indicated by the gray color,

with standard typing and reduction rules.

We prove the unfolding lemma and transitivity theorem for QuickSub{} in the same way as we

did for QuickSub. One technical detail in the proof of the unfolding lemma is that the generalized
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Expressions 𝑒 F 𝑥 | i | 𝑒1 𝑒2 | 𝜆𝑥 : 𝐴. 𝑒 | unfold [𝐴] 𝑒 | fold [𝐴] 𝑒 | {𝑙𝑖 = 𝑒𝑖
𝑖∈1· · ·𝑛} | 𝑒.𝑙

Values 𝑣 F i | 𝜆𝑥 : 𝐴. 𝑒 | fold [𝐴] 𝑣 | {𝑙𝑖 = 𝑣𝑖
𝑖∈1· · ·𝑛}

Γ ⊢ 𝑒 : 𝐴 (Record Typing)
typing-proj

Γ ⊢ e : {𝑙𝑖 : A𝑖
𝑖∈1· · ·𝑛}

Γ ⊢ e.𝑙𝑖 : A𝑖

typing-rcd

for each 𝑖 Γ ⊢ e𝑖 : A𝑖

Γ ⊢ {𝑙𝑖 = e𝑖 𝑖∈1· · ·𝑛} : {𝑙𝑖 : A𝑖
𝑖∈1· · ·𝑛}

𝑒1 ↩→ 𝑒2 (Record Reduction)
step-proj

e ↩→ e′

e.𝑙 𝑗 ↩→ e′ .𝑙 𝑗

step-projrcd

{𝑙𝑖 = v𝑖 𝑖∈1· · ·𝑛}.𝑙 𝑗 ↩→ v𝑗

step-rcd

e𝑗 ↩→ e′𝑗
{𝑙𝑖 = 𝑣𝑖

𝑖∈1· · · 𝑗−1, 𝑙 𝑗 = e𝑗 , 𝑙𝑘 = 𝑒𝑘
𝑘∈ 𝑗+1· · ·𝑛} ↩→ {𝑙𝑖 = 𝑣𝑖

𝑖∈1· · · 𝑗−1, 𝑙 𝑗 = e′𝑗 , 𝑙𝑘 = 𝑒𝑘
𝑘∈ 𝑗+1· · ·𝑛}

Fig. 7. Extension to record expressions.

unfolding lemma requires awell bound condition, whichmakes use of theweakly positive restriction.

To make the proof work for QuickSub{} , we extend the syntactic reflexivity of 𝜇𝛽. 𝐴 in rule Posvar-

recself to a more general equivalence relation 𝜇𝛽. 𝐴 ≈ 𝜇𝛽. 𝐵, considering record permutation.

The two key lemmas for establishing type soundness, the unfolding lemma and transitivity, are:

Theorem 4.1 (Unfolding lemma for QuickSub{} ).
If · ⊢+ 𝜇𝛼. 𝐴 ⪅ 𝜇𝛼. 𝐵, then · ⊢+ 𝐴[𝛼 ↦→ 𝜇𝛼. 𝐴] ⪅ 𝐵 [𝛼 ↦→ 𝜇𝛼. 𝐵]

Theorem 4.2 (Transitivity for QuickSub{} ). If Ψ ⊢⊕ 𝐴 ⪅1 𝐵 and Ψ ⊢⊕ 𝐵 ⪅2 𝐶 , then Ψ ⊢⊕ 𝐴 (⪅1
◦ ⪅2) 𝐶 .
With the unfolding lemma and transitivity theorem for QuickSub{} , we can show that the

calculus in Figure 7 is type sound by standard progress and preservation lemmas.

5 Evaluation
We provide an OCaml implementation of QuickSub. The QuickSub rules in Figure 2 can be easily

translated into a recursive function, as shown in Figure 8, by considering the subtyping results as

outputs and the other components in the judgement Ψ ⊢⊕ 𝐴 ⪅ 𝐵 as inputs. However, the set union

and computation of the free variables in the last case of the function, if implemented naively, such

as using the OCaml Set module, can be costly in some cases. Consider the following application of

rule QS-recsqin:

Sub𝛼+
1
,𝛼+

2
,...,𝛼+

𝑛−1
(𝜇𝛼𝑛 . 𝛼1 → . . . → 𝛼𝑛 → nat, 𝜇𝛼𝑛 . 𝛼1 → . . . → 𝛼𝑛 → nat, +) = ≈{𝛼1,𝛼2,...,𝛼𝑛−1 }

since Sub𝛼+
1
,𝛼+

2
,...,𝛼+

𝑛
(𝛼1 → . . . → 𝛼𝑛 → nat, 𝛼1 → . . . → 𝛼𝑛 → nat, +) = ≈{𝛼1,𝛼2,...,𝛼𝑛 }

𝛼𝑛 ∈ {𝛼1, . . . , 𝛼𝑛}
so ({𝛼1, 𝛼2, . . . , 𝛼𝑛} ∪ FV(𝛼1 → . . . → 𝛼𝑛 → nat)) \ {𝛼𝑛} = {𝛼1, 𝛼2, . . . , 𝛼𝑛−1}

With functional Set operations, several meta-operations are required for this step: (1) determining

the membership of 𝛼𝑛 in the set takes 𝑂 (log𝑛) time, (2) computing the free variables of the type

𝛼1 → . . . → 𝛼𝑛 → nat takes 𝑂 (𝑚) time, where𝑚 is the size of the type, (3) computing the union

of the sets takes 𝑂 (𝑛) time, and (4) removing 𝛼𝑛 from the set takes 𝑂 (log𝑛) time.
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SubΨ (nat, nat, ⊕) = ≈∅
SubΨ (⊤,⊤, ⊕) = ≈∅
SubΨ (𝐴,⊤, ⊕) = < (if 𝐴 ≠ ⊤)
SubΨ (𝛼, 𝛼, ⊕) = ≈∅ (if 𝛼⊕ ∈ Ψ)
SubΨ (𝛼, 𝛼, ⊕) = ≈{𝛼 } (if 𝛼⊕ ∈ Ψ)
SubΨ (𝐴1 → 𝐴2, 𝐵1 → 𝐵2, ⊕) = SubΨ (𝐴2, 𝐴1, ⊕) • SubΨ (𝐵1, 𝐵2, ⊕)
SubΨ (𝜇𝛼. 𝐴1, 𝜇𝛼 . 𝐴2, ⊕) = < (if SubΨ,𝛼⊕ (𝐴1, 𝐴2, ⊕) = <)
SubΨ (𝜇𝛼. 𝐴1, 𝜇𝛼 . 𝐴2, ⊕) = ≈𝑆 (if SubΨ,𝛼⊕ (𝐴1, 𝐴2, ⊕) = ≈𝑆 and 𝛼 ∉ 𝑆)
SubΨ (𝜇𝛼. 𝐴1, 𝜇𝛼 . 𝐴2, ⊕) = ≈(𝑆∪FV(A1 ) )\{𝛼 } (if SubΨ,𝛼⊕ (𝐴1, 𝐴2, ⊕) = ≈𝑆 and 𝛼 ∈ 𝑆)
otherwise, SubΨ (𝐴, 𝐵, ⊕) fails

Fig. 8. Functional implementation of QuickSub.

To address this bottleneck, in our implementation we adopt a more efficient version SubImp of

QuickSub, that carries two extra parameters, 𝑆ev and 𝑆fv, both of which are imperative boolean

arrays that map all variables in the types to a boolean value. 𝑆ev [𝛼] indicates whether the variable
𝛼 is in the equality variable set, while 𝑆fv tracks the free variables on the fly. In the optimized

subtyping function, for the QS-recsqin rule, SubImpΨ (𝜇𝛼. 𝐴1, 𝜇𝛼 . 𝐴2, ⊕, 𝑆ev, 𝑆fv) now performs the

following operations:

(1) Before making the recursive call on the inner body, set 𝑆fv [𝛼] to true, indicating that 𝛼 is

considered as a free variable in the inner body, which takes 𝑂 (1) time.

(2) After the recursive call, determine the membership of 𝛼 in the set, which takes 𝑂 (1) time.

(3) Traverse 𝑆fv and update 𝑆ev for the union operation 𝑆 ∪ FV(𝐴1), which takes 𝑂 (𝑛) time.

(4) Set 𝑆ev [𝛼] to false to discard 𝛼 from the equality variable set, which takes 𝑂 (1) time.

(5) Update 𝑆fv to remove 𝛼 , which takes 𝑂 (1) time.

With this optimization, the only costly operation is the set union operation, which is 𝑂 (𝑛),
while the rest of the operations are 𝑂 (1), a large improvement over the functional implementation.

Readers may refer to the OCaml code for the full implementation details.

In the rest of this section, we evaluate the imperative implementation of QuickSub on a set of

benchmarks to evaluate its performance and scalability. For the sake of evaluation we add a new

base type real and new type constructs, namely sum types (𝐴 + 𝐵) and product types (𝐴 × 𝐵), to the

implementation so that useful benchmarks can be generated. The subtyping rules are standard:

real ≤ real
S-real

nat ≤ real
S-num

𝐴1 ≤ 𝐴2 𝐵1 ≤ 𝐵2

𝐴1 + 𝐵1 ≤ 𝐴2 + 𝐵2

S-sum

𝐴1 ≤ 𝐴2 𝐵1 ≤ 𝐵2

𝐴1 × 𝐵1 ≤ 𝐴2 × 𝐵2

S-prod

Note that whether real can be a supertype of nat remains debatable [Harper 2016], but we use it

here for benchmarking purposes. The nat ≤ real subtyping is not integral to the main system, and

can be replaced with dummy records (e.g., {𝑙Real : nat, 𝑙Nat : nat} ≤ {𝑙Real : nat}) if needed.
We compare the performance of QuickSub with several algorithms in the literature, including:

• The slightly optimized implementation of the nominal unfolding rules for subtyping iso-

recursive types by Zhou et al. [2022b], which avoids substitutions in positive positions:

Γ, 𝛼 ⊢ [𝛼 ↦→ 𝐴𝛼 ]− 𝐴 ≤ [𝛼 ↦→ 𝐵𝛼 ]− 𝐵

Γ ⊢ 𝜇𝛼. 𝐴 ≤ 𝜇𝛼. 𝐵
S-Nominal+

The polarized form of substitution [𝛼 ↦→ 𝐴]− 𝐵, only performs substitutions at negative

occurrences of type variables. Zhou et al. [2022b, Section 2.7] discussed that special case of

covariant subtyping, and mentioned that it would behave equivalently to rule SN-rec.
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Table 1. Time (seconds) taken for benchmarks with depth 5000 for (1) to (7) and 500 for (8). Timeout means
taking more than 100 seconds or causing a stack overflow. |𝑆 |max denotes the maximum size of the equality
variable set during execution.

No. QuickSub

Amber

1985

Complete

2017

Nominal

2022b

Equi

2002

Description |𝑆 |max

1 0.0045 1.7230 2.0541 5.6194 42.0146 Disprove negative < 1

2 0.0079 0.0004 1.9483 6.3181 41.6360 Prove negative ≈ (simple) 1

3 0.0085 7.3775 3.7602 12.6697 Timeout Prove positive < (simple) 0

4 0.0221 5.7502 3.4782 91.0706 Timeout Disprove positive < 0

5 0.0054 0.0006 3.8383 22.2383 Timeout Prove positive ≈ 0

6 0.0038 0.1829 1.2995 0.6027 Timeout Prove mixed tests 1

7 0.0082 5.7185 3.5229 30.0276 Timeout Prove positive < (nested) 0

8 0.0817 0.0057 3.8423 Timeout Timeout Prove negative ≈ (worst) 500

• The naive implementation of the Amber rules for subtyping iso-recursive types by Cardelli

[1985]. When recursive types are encountered, the algorithm will first try rule Amber-self

and then rule Amber-rec when the reflexivity check fails.

• The efficient implementation by Ligatti et al. [2017] for subtyping iso-recursive types, with

the ability to relate between recursive types and unfoldings. We remove the ⊥ type from

the algorithm as it is not considered in other algorithms. The original implementation was

written as an ML program, and we rewrite it in OCaml for comparison.

• The efficiently subtyping equi-recursive types algorithm described by Gapeyev et al. [2002,

Figure 2]. The algorithm is considered efficient in that it only requires at most𝑂 (𝑛2) recursive
calls by remembering a seen set of recursive subtypes throughout the computation.

All these algorithms are implemented in OCaml using the same named representation of bindings

for types as Ligatti et al.. For each test, we measure the execution time on a MacBook Pro with

a 2 GHz Intel Core i5 processor and 16 GB of memory. The data are collected by averaging the

execution time over 10 runs, excluding the maximum and minimum values, to reduce the impact of

system noise.

5.1 Simple Recursive Types
We first test QuickSub without record types to evaluate the algorithm’s asymptotic complexity and

efficiency across different scenarios, including the worst case scenario (case 8). The benchmarks for

testing the algorithm are sets of recursive types that follow certain patterns with different levels of

recursive depth or type size. As our focus is on the performance of the algorithm, instead of relying

on randomly generated types or property based testing tools such as QuickCheck [Claessen and

Hughes 2000], we manually write 8 pattern generators for testing the algorithms. The patterns

essentially generalize the various patterns discussed in Section 2.1. For details on how the bench-

marks are generated, please refer to the appendix. To give a general idea of how each algorithm

performs in different scenarios, we first evaluate QuickSub and other algorithms on a fixed large

depth of recursive types for 8 different patterns, namely 500 for the worst case pattern and 5000

for others. As we will show later, the size of types in worst case pattern will grow quadratic with

the depth, so we choose a smaller depth for the worst case pattern to avoid a stack overflow. The

results are shown in Table 1. In each row, the algorithm that takes the least time is highlighted in

bold.

The results in Table 1 show that QuickSub generally performs the best across most scenarios.

Notably, it outperforms other algorithms in 5 out of the 8 cases, with the Amber rules performing
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1 2 3 4 5 6 7 8 9

10
−6

10
−4

10
−2

10
0

10
2

Depth

T
i
m
e
(
s
)

Width

Depth 100 1000 2000

1 0.02144 1.10701 4.73034

10 0.19642 34.11267 Timeout

100 53.19658 Timeout Timeout

200 Timeout Timeout Timeout

Fig. 9. Equi-recursive subtyping algorithm evaluation. Left: Time (seconds measured in log scale) taken for
the worst-case pattern as the recursive depth increases. Right: Time (seconds) taken for subtyping recursive
record types with varying recursive depths and record widths.

better in those cases where equivalent subtyping is checked. This is not a surprise, as our Amber

rule implementation always tries the reflexivity rule first. For these cases the performance of Amber

rules can vary if the non-deterministic choice order between the rules for recursive types changes

in the implementation. Nonetheless, in these cases QuickSub is still competitive with the Amber

rules and outperforms others by a significant margin.

Substitution overhead. In equi-recursive subtyping and the nominal unfolding rules, the substitu-

tion operation becomes a significant overhead when the number of recursive variables increases.

For equi-recursive subtyping, although Gapeyev et al. [2002] showed that the number of recursive

calls is at most𝑂 (𝑛2), the substitution operation is still frequently performed when recursive types

are unfolded. So, the time complexity of the algorithm in practice, when measured by the number of

meta-operations, can be significantly larger than𝑂 (𝑛2). To illustrate this point, we conduct a small

experiment on the worst case pattern (case 8) with depth ranging from 1 to 10, as shown in the left

plot of Figure 9. The results show that as the depth increases, the time taken by the equi-recursive

subtyping algorithm grows exponentially, and a depth of 10 recursive variables already leads to a

timeout.

For the nominal unfolding rules, substitution leads to a timeout in many patterns. The complete

algorithm implementation by Ligatti et al. [2017] avoids this with an unroll table, but it remains

unknown whether this design can be adapted to other subtyping rules. Both QuickSub and the

Amber rules are not affected by the substitution overhead due to their algorithm design.

Worst case. It is worth noting that Table 1 also records the maximum size of the equality variable

set |𝑆 |max during the execution of QuickSub. Since the equality variable set operation is the main

bottleneck of QuickSub, the size of this set can be a good indicator of the scenario where the

algorithm performs the worst. For cases (1) to (6), the size is constant 0 or 1, since they follow

a pattern where inner recursive types do not refer to outer recursive variables, as illustrated in

Figure 10a. Nested recursive types are not problematic when they appear positively. Case (7)

captures this pattern, which is illustrated in Figure 10b. When variables occur negatively and the

subtyping result is equality ≈, all of the variables need to be added to the equality variable set.

We test such a scenario in case (8), which basically compares a reflexive relation for types with a

pattern shown in Figure 10c. The results show that QuickSub is still able to handle such a worst case
scenario. Note that to achieve this, QuickSub needs to be optimized using the imperative boolean

array technique, as discussed earlier. In contrast, the functional version of QuickSub, which uses

the standard OCaml Set module for equality variable sets, takes 4.78 seconds for case (8) in Table 1.

Overall, QuickSub remains consistently efficient, demonstrating strong performance across

various recursive type patterns.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 33. Publication date: January 2025.



QuickSub: Efficient Iso-Recursive Subtyping 33:25

class A {

foo(Nat) : A

...

class B {

bar(Real) : B

}}

(a) Simple Recursive Objects

class A {

foo(Nat) : A

...

class B {

bar(Real) : A

}}

(b) Nested Recursive Objects

𝜇𝛼1 . 𝛼1 → (𝜇𝛼2.
𝛼1 → 𝛼2 → (𝜇𝛼3.
𝛼1 → 𝛼2 → 𝛼3 → (𝜇𝛼4.

. . .

. . .)))

(c) Worst Case Pattern

Fig. 10. Illustrations of worst case pattern and corresponding objects.
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Fig. 11. Comparison of different works across multiple tests.

Time complexity, empirically. Next, to reveal the time complexity of QuickSub and other algo-

rithms, we fix the pattern and vary the depth of recursive types. We plot the results in Figure 11 for

testing cases (3), (4), (6) and (7), which are all non-trivial cases (compared to reflexivity cases) that

are commonly encountered in practice.

The results in Figure 11 show that QuickSub demonstrates a linear complexity trend across all

tested scenarios. We do not present the results for the nominal unfolding rules or the equi-recursive

algorithm as they time out or take a long time in all these selected cases. In all these cases, the

performance of QuickSub is consistently better than other algorithms, with the execution time

increasing linearly as the depth of recursive types increases, while other algorithms exhibit a

steeper linear or even quadratic growth in execution time.

5.2 Subtyping Record Types
Next, we focus on scenarios frequently encountered in practical programming, where record types

are used to encode objects or data structures. To evaluate how well the algorithms manage such
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Table 2. Runtime results (seconds) for subtyping record types (depth = 100, width = 1000). Timeout means
taking more than 100 seconds or causing a stack overflow.

Test No. QuickSub{} Amber Equi Complete Description

1 0.0124 0.0822 Timeout 3.5369 Disprove positive subtyping

2 0.0609 0.0758 Timeout 0.8942 Disprove negative subtyping

3 0.1051 4.1899 Timeout 5.7472 Prove positive subtyping

4 0.1147 4.2414 Timeout 0.9660 Prove negative subtyping with ⊤ types
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Fig. 12. Runtime results (seconds) for different algorithms with varying benchmark sizes in depth and width.

structures, we conducted tests on benchmarks that contain record types extending in both width

and recursive depths. The detailed methodology for generating these benchmarks is discussed in

the appendix. These benchmarks are designed to simulate realistic conditions, reflecting common

patterns as also noted in related work on optimizing iso-recursive subtyping in practical settings

like WebAssembly [Rossberg 2023], who observed that even with shallow recursive depths, nested

record types can cause significant performance overhead for subtyping algorithms. Here, recursive

record types typically involve a large number of fields with a relatively shallow recursive depth.

Evaluation Setup. We have already discussed extending QuickSub to QuickSub{} for supporting
record types in Section 4. As for the other algorithms, we extend the nominal unfolding rules [Zhou

et al. 2022b] and Ligatti et al. [2017]’s rules with an extra case for pointwisely comparing the fields

of the record types. The extension to the Amber rules is more involved, as the algorithm relies on a

reflexivity check to handle subtyping between recursive types. We extend the syntactic reflexivity

check to a more generalized check that allows permutations of the fields in the record types, which

leads to a slight cost in performance.

Overall Performance. We first fix the depth of the recursive types to 100 and the width of the

record types to 1000 and test QuickSub{} against other algorithms over four scenarios. The results

are shown in Table 2. Our evaluations reveal that QuickSub{} consistently performs best.
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Scalability of QuickSub{} . We next extend our testing to benchmarks with varying widths and

depths, focusing particularly on case (3) in Table 2 as it represents the most typical and practical

scenario. We omit the results for the nominal unfolding rules and present the results for the

equi-recursive algorithm in the right table of Figure 9 alone as they take significantly longer to

complete compared to other algorithms or time out. The results, illustrated in Figure 12, show

minimal differences in runtime among all algorithms when the depth is 1, reflecting a computational

complexity of 𝑂 (𝑚), where𝑚 denotes the type size. However, as the recursive depth increases,

QuickSub{} starts to show significant advantages. For example, at a depth of 10, QuickSub{} already
outperforms other algorithms when the record type has a certain number of fields. The margin of

improvement becomes more pronounced as the depth increases, as can be seen by the increasing

time scale in the four subplots. In practical programming tasks, where the definition of one object

often relies on another, it is common to have nested recursive structures with a large number

of fields to be compared, as we have shown in Figure 10. Our analysis shows that in such cases,

QuickSub{} will demonstrate notable efficiency and scalability advantages over other algorithms.

6 Related Work
Iso-recursive subtyping. We have reviewed the most related work on subtyping iso-recursive

types in the overview, such as the iso-recursive Amber rules [Cardelli 1985], the nominal unfolding

rules [Zhou et al. 2022b], and the complete subtyping rules [Ligatti et al. 2017]. While for this

paper we have focused on efficiency and have shown that QuickSub has significant advantages in

terms of performance, there are some other considerations that we have not discussed. For instance,

an advantage of the nominal unfolding rules, compared to all other iso-recursive formulations

(including QuickSub) is the modularity of the rules and proofs. That is, the nominal rules do

not require changes to pre-existing rules (such as subtyping for functions) and they do not also

require changes to proof cases that are not related to recursive types. QuickSub does not share this

advantage and it does require changes to other rules, and cases that are not related to recursive types

in the proofs. Nonetheless we have shown that QuickSub still allows us to develop the relevant

metatheory without relying on other formulations of iso-recursive subtyping.

There are other alternative formulations for iso-recursive subtyping as well. Hofmann and Pierce

[1995] introduced a subtyping relation that limits recursive subtyping to covariant types only.

In other words, only functions with same input types can be related by subtyping, which makes

their rules more restrictive than the Amber rules. Hosoya et al. [1998] restricted the recursive

types to be top-level datatype declarations only, and formulated a subtyping relation that deals

with mutually recursive declarations. However, this approach moves away from the standard

conventional operational semantics and subtyping rules for recursive types as the rules rely on a

special list of subtyping assumptions. Recently, Rossberg [2023] developed a calculus for higher-

order declared subtyping with a standard formulation of iso-recursive types and subtyping, which

effectively handles mutually recursive types without falling back to encodings of quadratic size as

in the classic Amber rules. They observe that in practice, especially for languages more focused on

nominal typing, the full power of equi-recursive subtyping or even iso-recursive subtyping is not

needed. By restricting possible supertypes of recursive types to only types that have been declared

to be in a subtyping relation, they can check the subtyping of recursive types only once when

declaring the recursive types. In contrast, with general equi- or iso-recursive types, the recursive

subtyping check needs to be done whenever needed. Compared to the line of work on declared

subtyping, we focus on the latter case, where the full power of iso-recursive subtyping is available,

which could be helpful in languages with some form of structural typing.
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Implementing iso-recursive subtyping. Some variants of iso-recursive subtyping already come

with an algorithm for checking subtyping with efficiency in mind. For instance, both the complete

subtyping rules [Ligatti et al. 2017] and the mutually iso-recursive subtyping rules [Rossberg

2023] have efficient algorithms. However, Ligatti et al. only presented their algorithm as an ML

program and argued informally about the correspondence to his proposed complete rules (see

also Section 2.1). In contrast, we formalize our algorithm as a set of inference rules and have

formal results for the correctness of the algorithm in Section 3.2. For Amber-style subtyping, there

are various algorithmic variants [Zhou et al. 2022b]. However, these variants were not designed

for efficiency, but to help with theoretical issues. For example, the weakly positive rules that

we discussed in Section 3.2, still rely on built-in reflexivity rule PosRes-self to ensure that the

subtyping relation is reflexive for negative recursive types. Thus, a non-deterministic choice of the

rules has to be made, requiring backtracking in an algorithm. Cardelli [1993] considered a recursive

subtyping algorithm that is claimed to be equivalent to the iso-recursive Amber rules. As we

discussed in Section 2.1, a formal proof of equivalence is missing, and due to the “tie” computation,

and the way it checks equivalence by running twice the subtyping algorithm, the algorithm itself

is not as efficient as QuickSub.

Equi-recursive types. Equi-recursive types, where a recursive type is considered as an infinite

tree and equal to its unfoldings, also have a long history in the literature. They are widely used

in various calculi and programming languages. Amadio and Cardelli [1993] laid the groundwork

for equi-recursive subtyping, later refined by Brandt and Henglein [1998]; Gapeyev et al. [2002];

Kozen et al. [1993]. Equi-recursive types are used in session types [Castagna et al. 2009; Chen et al.

2014; Gay and Hole 2005; Gay and Vasconcelos 2010], gradual typing [Siek and Tobin-Hochstadt

2016], Scala’s Dependent object types (DOT) calculus [Amin et al. 2016; Rompf and Amin 2016],

and so on. We note prior work in type inference that addresses equi-recursive subtyping based

on the idea of encoding recursive types as bound constraints [Kaes 1992; Pottier 1998] and leads

to efficient language implementations, such as MLstruct [Parreaux and Chau 2022]. While we

have not included these approaches in our benchmarking, we believe they could offer potential

improvements to the practical performance of equi-recursive subtyping. There have also been

efforts to adapt equi-recursive subtyping algorithms to more advanced type systems, where the

general equi-recursive subtyping problem is impractical or undecidable. A recent effort in this

direction was made by DeYoung et al. [2024], who have shown that equi-recursive subtyping with

parametric polymorphism and recursively defined type constructors is undecidable. However it is

still possible to obtain a sound (but incomplete) algorithm that works well in practice.

The relation between iso-recursive and equi-recursive types has also been studied in the lit-

erature [Abadi and Fiore 1996; Patrignani et al. 2021; Urzyczyn 1996; Zhou et al. 2024]. Notably,

Abadi and Fiore argued that by inserting coercion functions, equi-recursive types can be encoded

as iso-recursive types and vice versa. Thus, the two formulations have the same expressive power.

Patrignani et al. further proved that the transformation from iso-recursive types to equi-recursive

types, by erasing the unfold and fold operators, is fully abstract with respect to contextual equiva-

lence. Abadi and Fiore’s encoding of equi-recursive types via iso-recursive types has an important

drawback: the coercion functions employed in the encoding are computationally relevant. Zhou

et al. presented a new formulation of iso-recursive types, called full iso-recursive types, that en-

ables encoding all equi-recursive programs without computational overhead. This is achieved by

generalizing fold and unfold operations to computationally irrelevant casts, that can replace the

coercions in Abadi and Fiore’s work. Their results also extend to subtyping, which previous works

have not considered. The subtyping rules used in their 𝜆
𝜇<:

𝐹𝑖
calculus are based on the iso-recursive
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Amber rules, which means that QuickSub can be directly applied to their calculus and obtain a

more efficient version of full iso-recursive subtyping.

Additionally, it is important to identify the different expressiveness results in the literature and

their implications. Specifically, in terms of the expressive power of the subtyping relation, we

have the iso-recursive Amber rules, which are less expressive than the complete rules by Ligatti

et al. [2017], which in turn are less expressive than equi-recursive subtyping. However, the results

by Abadi and Fiore [1996]; Zhou et al. [2024] show that by having more annotations (casts) or

coercions in the term language, we can bridge this expressive power gap. Furthermore, Zhou et al.

show that this can be done without any runtime performance cost with their full iso-recursive

types. As implied by Zhou et al. and Amadio and Cardelli [1993], equi-recursive subtyping to

some extent mixes the coinductive, infinite-tree view of recursive type equality with the inductive,

finite-tree view of recursive subtyping. The two can be decomposed if needed. For example, let

𝐴 = nat → (𝜇𝛼. ⊤ → 𝛼) and 𝐵 = 𝜇𝛼. nat → ⊤ → 𝛼 , then the equi-recursive subtyping 𝐴 ≤𝑒 𝐵 is

decomposed as follows:

𝐴 =𝑒 nat → ⊤ → (𝜇𝛼. ⊤ → ⊤ → 𝛼) ≤ nat → ⊤ → (𝜇𝛼. nat → ⊤ → 𝛼) =𝑒 𝐵
where =𝑒 denotes the coinductive equi-recursive equality relation and ≤ is an Amber-style iso-

recursive subtyping relation. In such scenarios, the iso-recursive subtyping part can be replaced by

any equivalent set of rules, such as our QuickSub rules, and the equi-recursive expressive power

can be recovered by other means, such as casts or coercions.

Mechanized proofs on recursive types. Amber-style iso-recursive subtyping rules were only re-

cently mechanized in proof assistants by Zhou et al. [2020, 2022b]. They formalize the Amber

rules, nominal unfolding rules, and the weakly positive rules and prove several properties and

equivalence results between them in Coq. Our work aligns closely with these efforts, by formalizing

the equivalence proof of QuickSub to their rules and the type soundness proof in Coq. There are a

few works on mechanizing other variants of recursive subtyping. Appel and Felty [2000]; Backes

et al. [2014] formalized subtyping relations for iso-recursive types in Coq, focusing on positive

subtyping. Amin and Rompf [2017]’s formalization of DOT involves a special form of equi-recursive

types. Patrignani et al. [2021] formalized three calculi in Coq: a simply typed lambda calculus

extended with iso-recursive types, equi-recursive types, and term-level fixpoints and showed several

contextual equivalence results between them. Zhou et al. [2024] formalized their full iso-recursive

types in Coq and adopted Zhou et al. [2022b]’s formalization for subtyping iso-recursive types.

7 Conclusion
In this paper, we introduce QuickSub, a novel efficient algorithm for iso-recursive subtyping.

We show its correctness by proving its equivalence to the well-known Amber rules. We also

show a direct type soundness proof for a calculus with QuickSub. Our OCaml implementation,

accompanied by empirical evaluations, shows that QuickSub significantly outperforms existing

algorithms, particularly in practical scenarios involving positive subtyping and nested recursive

types. We also extend QuickSub to handle record types, broadening its applicability. Future work

includes extending QuickSub to incorporate additional features and providing a direct equivalence

proof for QuickSub{} with existing systems, such as the nominal unfolding rules. Furthermore, we

plan to leverage full iso-recursive types [Zhou et al. 2024] to encode equi-recursive subtyping, and

enhance the algorithm’s expressiveness and efficiency in more complex type systems.

Data Availability Statement
The QuickSub formalization, implementation and evaluation examples are openly available in

Zenodo [Zhou and Oliveira 2024] and https://github.com/ltzone/QuickSub.
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A Generation of Benchmarks
We use the same named representation for the types in the benchmarks for all the algorithms in the

evaluation. We assume that all the types tested have distinct names for each type variable, which is

the same assumption made in [Ligatti et al. 2017].

For the patterns tested in Table 1, we generate the types as follows, where 𝑛 is the depth of the

type:

(1) Disproving negative strict subtyping: 𝜇𝛼1 . nat → (𝜇𝛼2.nat → · · · (𝜇𝛼𝑛 . 𝛼𝑛 → nat)) ≰
𝜇𝛼1. nat → (𝜇𝛼2 .nat → · · · (𝜇𝛼𝑛 . 𝛼𝑛 → real))

(2) Proving negative equivalent subtyping with one variable at each level of recursive body:

𝜇𝛼1. nat → (𝜇𝛼2.nat → · · · (𝜇𝛼𝑛 . 𝛼𝑛 → nat)) ≈ 𝜇𝛼1. nat → (𝜇𝛼2.nat → · · · (𝜇𝛼𝑛 . 𝛼𝑛 →
nat))

(3) Proving positive strict subtyping with one variable at the innermost position: 𝜇𝛼1. real →
(𝜇𝛼2. real → · · · (𝜇𝛼𝑛 . real → 𝛼𝑛)) < 𝜇𝛼1. nat → (𝜇𝛼2 . nat → · · · (𝜇𝛼𝑛 . nat → 𝛼𝑛))

(4) Disproving positive strict subtyping with multiple variables at the innermost position:

𝜇𝛼1. nat → (𝜇𝛼2. nat → · · · (𝜇𝛼𝑛 . nat → 𝛼1 × . . . × 𝛼𝑛)) ≮ 𝜇𝛼1 . nat → (𝜇𝛼2 . nat →
· · · (𝜇𝛼𝑛 . real → 𝛼1 × . . . × 𝛼𝑛))

(5) Proving positive equivalent subtyping with multiple variables at the innermost position:

𝜇𝛼1. real → (𝜇𝛼2 . real → · · · (𝜇𝛼𝑛 . real → 𝛼1 × . . . × 𝛼𝑛)) ≈ 𝜇𝛼1 . real → (𝜇𝛼2. real →
· · · (𝜇𝛼𝑛 . real → 𝛼1 × . . . × 𝛼𝑛))

(6) Proving mixed tests: generate 10 pairs of types that are randomly selected from the above

patterns and compose them using product types in a pairwise way.

(7) Proving positive strict subtypingwithmultiple variables at the innermost position: 𝜇𝛼1 . real →
(𝜇𝛼2. real → · · · (𝜇𝛼𝑛 . real → 𝛼1 × . . . × 𝛼𝑛)) < 𝜇𝛼1. nat → (𝜇𝛼2. nat → · · · (𝜇𝛼𝑛 . nat →
𝛼1 × . . . × 𝛼𝑛))

(8) (The worst case scenario for QuickSub) Proving negative equivalent subtyping with multiple

variables at the each level of recursive body: testing a type of the form described in Figure 10c

with itself.

We use OCaml Map module to represent the fields of the record types in the benchmarks. For the

patterns in Table 2, we generate the types as follows:

(1) Disproving positive subtyping:

𝜇𝛼1. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: real → 𝛼1, . . . , 𝑙𝑚 : real → 𝛼1

𝑙𝜇 : 𝜇𝛼2 . {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: real → 𝛼2, . . . , 𝑙𝑚 : real → 𝛼2

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}

≮

𝜇𝛼1 . {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: nat → 𝛼1, . . . , 𝑙𝑚 : nat → 𝛼1

𝑙𝜇 : 𝜇𝛼2. {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: nat → 𝛼2, . . . , 𝑙𝑚 : nat → 𝛼2

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}
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(2) Disproving negative subtyping:

𝜇𝛼1. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼1 → nat, . . . , 𝑙𝑚 : 𝛼1 → nat

𝑙𝜇 : 𝜇𝛼2 . {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼2 → nat, . . . , 𝑙𝑚 : 𝛼2 → nat

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}

≮

𝜇𝛼1 . {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼1 → real, . . . , 𝑙𝑚 : 𝛼1 → real

𝑙𝜇 : 𝜇𝛼2. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼2 → real, . . . , 𝑙𝑚 : 𝛼2 → real

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}
(3) Proving positive subtyping:

𝜇𝛼1. {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: real → 𝛼1, . . . , 𝑙𝑚 : real → 𝛼1

𝑙𝜇 : 𝜇𝛼2. {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: real → 𝛼2, . . . , 𝑙𝑚 : real → 𝛼2

𝑙𝜇 : 𝜇𝛼3 . {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}

<

𝜇𝛼1. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: nat → 𝛼1, . . . , 𝑙𝑚 : nat → 𝛼1

𝑙𝜇 : 𝜇𝛼2. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: nat → 𝛼2, . . . , 𝑙𝑚 : nat → 𝛼2

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}
(4) Proving negative subtyping with ⊤ types:

𝜇𝛼1. {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: ⊤ → nat, . . . , 𝑙𝑚 : ⊤ → nat

𝑙𝜇 : 𝜇𝛼2 . {
𝑙1 : nat, . . . , 𝑙𝑚 : nat
𝑙 ′
1
: ⊤ → nat, . . . , 𝑙𝑚 : ⊤ → nat

𝑙𝜇 : 𝜇𝛼3. {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}

<

𝜇𝛼1 . {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼1 → real, . . . , 𝑙𝑚 : 𝛼1 → real

𝑙𝜇 : 𝜇𝛼2. {
𝑙1 : real, . . . , 𝑙𝑚 : real
𝑙 ′
1
: 𝛼2 → real, . . . , 𝑙𝑚 : 𝛼2 → real

𝑙𝜇 : 𝜇𝛼3 . {. . . 𝜇𝛼𝑛 .{. . .} . . .}
}

}
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