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Two main approaches: iso-recursive and equi-recursive types.




INTRODUCTION
o] 1)

Iso-Recursive Types

Unlike equi-recursive types, recursive types and their unfoldings are
not equal, and require explicit fold and unfold operations.

X pa.Int — o = Int — (px. Int — «)




INTRODUCTION
o] 1)

Iso-Recursive Types

Unlike equi-recursive types, recursive types and their unfoldings are
not equal, and require explicit fold and unfold operations.

X pa.Int — o = Int — (px. Int — «)

unfold [pece. Int — o] e;

T

e : poeInt — e, : Int — (poeInt — )

\_/

fold [uo. Int — o] e,




INTRODUCTION
o] 1)

Iso-Recursive Types

Unlike equi-recursive types, recursive types and their unfoldings are
not equal, and require explicit fold and unfold operations.

X pa.Int — o = Int — (px. Int — «)

unfold [pece. Int — o] e;

T

e : poeInt — e, : Int — (poeInt — )

\_/

fold [uo. Int — o] e,

Iso-Recursive Subtyping
vV opx. T — o < poc Int — o




INTRODUCTION
ooe

Recursive Subtyping

Iso-Recursive Subtyping (vs. Equi-Recursive Subtyping)

Simpler metatheory
o No coinductive reasoning is needed

Easier to scale to more features®?:

More efficient meta operations? (e.g. equivalence checking)

“Dreyer et al., Toward a Practical Type Theory for Recursive Modules.
bChugh, “IsoLATE: A type system for self-recursion’.

‘L. Zhou et al., “Recursive Subtyping for All”.

dRossberg, “Mutually Iso-Recursive Subtyping”.




INTRODUCTION
ooe

Recursive Subtyping

Iso-Recursive Subtyping (vs. Equi-Recursive Subtyping)

v

\

Simpler metatheory

o No coinductive reasoning is needed
Easier to scale to more features®°

More efficient meta operations? (e.g. equivalence checking)

Lack of an efficient iso-recursive subtyping algorithm

“Dreyer et al., Toward a Practical Type Theory for Recursive Modules.
bChugh, “IsoLATE: A type system for self-recursion’.

‘L. Zhou et al., “Recursive Subtyping for All”.

dRossberg, “Mutually Iso-Recursive Subtyping”.




INTRODUCTION
ooe

Recursive Subtyping

Iso-Recursive Subtyping (vs. Equi-Recursive Subtyping)

v

\

Simpler metatheory

o No coinductive reasoning is needed
Easier to scale to more features®°

More efficient meta operations? (e.g. equivalence checking)

Lack of an efficient iso-recursive subtyping algorithm =- QuickSub

“Dreyer et al., Toward a Practical Type Theory for Recursive Modules.
bChugh, “IsoLATE: A type system for self-recursion’.

‘L. Zhou et al., “Recursive Subtyping for All”.

dRossberg, “Mutually Iso-Recursive Subtyping”.




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)
If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)
If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types
Unfolding Lemma (expected)
If uoe. A < p. B, then Aluoe. A/x] < Blpo. B/«o.

e Positive subtyping is easy to check by comparing the type body
o ux. I = & < px. Int — «
T = (. T — o) < Int — (po.Int — ) v

T - (T—(pa. T = «)) < Int — (Int — (poe.Int — «)) v




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)

If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o

e But negative subtyping (in most cases) has to be rejected.
o pox.x — Int £ pot.x — T




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types
Unfolding Lemma (expected)
If uoe. A < p. B, then Aluoe. A/x] < Blpo. B/«o.
e Positive subtyping is easy to check by comparing the type body
o ux. I —- & < px. Int — «

e But negative subtyping (in most cases) has to be rejected.
o po.ow — Int £ poe.ox — T
- (pocw = Int) —» Int < (px - T) = T

- ((po.x — Int) = Int ) > Int < ((pox - T)— T)—=TX




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)

If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o

e But negative subtyping (in most cases) has to be rejected.
o pox.x — Int £ pot.x — T

e However, negative recursive types can be subtypes of themselves.
o poe. T — o < px. T — o (by reflexivity)




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)

If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o

e But negative subtyping (in most cases) has to be rejected.
o pox.x — Int £ pot.x — T

e However, negative recursive types can be subtypes of themselves.
o poe. T — o < px. T — o (by reflexivity)

e Moreover, negative variables can be subtypes of T.
o px. T — o < . ox — o




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types
Unfolding Lemma (expected)
If uoe. A < p. B, then Aluoe. A/x] < Blpo. B/«o.

Positive subtyping is easy to check by comparing the type body
o po. T = o < pe. Int =

But negative subtyping (in most cases) has to be rejected.
o po.ow — Int £ poe.ox — T

However, negative recursive types can be subtypes of themselves.
o pa. T — o < poe. T — o (by reflexivity)

Moreover, negative variables can be subtypes of T.
o poe. T — o < pot. ox —
T = (poe. T — o) < (o — o) — (poox — ) v




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)

If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o

e But negative subtyping (in most cases) has to be rejected.
o pox.x — Int £ pot.x — T

e However, negative recursive types can be subtypes of themselves.
o poe. T — o < px. T — o (by reflexivity)

e Moreover, negative variables can be subtypes of T.
o px. T — o < . ox — o

e Nested recursive types make the problem even trickier.
o What is the subtyping relation between uf3. T — (no. &« — () and
up.Int — (poe. o — B)?




BACKGROUND
[ 1]

Considerations for subtyping iso-recursive types

Unfolding Lemma (expected)

If uoe. A < pe. B, then Aluoe. A/x] < Blpo. B/«o].

e Positive subtyping is easy to check by comparing the type body
o poe. T — o < poe. Int = o

e But negative subtyping (in most cases) has to be rejected.
o pox.x — Int £ pot.x — T

e However, negative recursive types can be subtypes of themselves.
o poe. T — o < px. T — o (by reflexivity)

e Moreover, negative variables can be subtypes of T.
o px. T — o < . ox — o

e Nested recursive types make the problem even trickier.
o What is the subtyping relation between uf3. T — (no. &« — () and
up.Int — (poe.ox — B)? X




BACKGROUND
oe

Why iso-recurisve subtyping have been inefficient?

Amber Rules**

(Amber-rec) (Amber-assump) (Amber-self)
NMau<pPrHALB a<pBerl
N poA < up.B Nr-oa<p MEpocA < pocA

°Cardelli, “Amber”.
°Amadio et al., “Subtyping recursive types”.




BACKGROUND
oe

Why iso-recurisve subtyping have been inefficient?
Amber Rules"*

(Amber-rec) (Amber-assump)

(Amber-self)
NMau<pPrHALB a<pBerl
N poA < up.B Nr-oa<p MEpocA < pocA

e Amber-rec rule deals with recursive subtyping, and rules out the
problematic negative subtyping cases:
o pux. T — < pup.Int — 3
o px.x — Int £ up.p — T

°Cardelli, “Amber”.

°Amadio et al., “Subtyping recursive types”.




BACKGROUND
oe

Why iso-recurisve subtyping have been inefficient?

Amber Rules**

(Amber-rec) (Amber-assump)

NMau<pPrHALB a<pBerl
M poA < pp.B rFa<p MEpoA < poA

(Amber-self)

e Amber-rec rule deals with recursive subtyping, and rules out the
problematic negative subtyping cases:
o pux. T — < pup.Int — 3
o px.x — Int £ up.p — T

e However, to ensure reflexivity for negative subtyping, Amber-self
rule is needed. (= backtracking, costly for nested types)
o pa.ot — Int < pox. oo — Int

°Cardelli, “Amber”.
°Amadio et al., “Subtyping recursive types”.




BACKGROUND
oe

Why iso-recurisve subtyping have been inefficient?

Amber Rules**

(Amber-rec) (Amber-assump) (Amber-self)
NMau<pPrHALB a<pBerl
N poA < up.B Nr-oa<p MEpocA < pocA

e Amber-rec rule deals with recursive subtyping, and rules out the
problematic negative subtyping cases:
o pux. T — < pup.Int — 3
o px.x — Int £ up.p — T

e However, to ensure reflexivity for negative subtyping, Amber-self
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QuickSub: Efficient Iso-Recursive Subtyping

YheASB

Though written as a judgment, QuickSub can be easily interpreted as
an algorithm.

e Input: subtyping context V¥, polarity mode &, types A and B.

e Output: subtyping result (T = < | ~), or failure where no rules
apply.

e Equivalent to Amber rules.




Key idea (1) - tracking polarity

Subtyping Context V¥ =W, a?|
Polarity Mode @ s=+—
Subtyping Results 5 =< |~
— |YFgAZSB
(QSub-RecLt) (QSub-Fun)
W,O(GBF@A<B lyl_éAzéle \yl_@AlézBl
Yig notA < po.B Yig A — A (S0 5.)Bi— B,

When «® is the same as ¢, o is positive (to the right of —’s)
When o is the flip of -, o is negative (to the left of —’s)
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Key idea: equality variable set

Subtyping Context ¥ =W, a?|
Polarity Mode ® u=+|—
Subtyping Results < =< | =5
Equality Var. Set S =0|{c,..., o)




QuickSuB
000080

Key idea: equality variable set

—|YFg ASB|l——
=V a0

Subtyping Context ¥
Polarity Mode O =4 (QSub-VarNeg)
Subtyping Results < =< | =5 a® ey
Equality Var. Set S =0{x,..., o} Whg oo Ry o
(QSub-VarPos)
«® eV

Yig o=y




QuickSuB
000080

Key idea: equality variable set

—|YFg ASB|l——
=V a0

Subtyping Context ¥
Polarity Mode @ u=+|— (QSub-VarNeg)
Subtyping Results < =< | =5 a® ey
Equality Var. Set S =0{x,..., o} Whg oo Ry o
(QSub-VarPos)
a® eV
(QSub-Fun) ’“’sz ; ?z - Z«s;usz
WF@Azéle WFEBAlszBl <eoe< = <
<ermy = <
v |_69 4 — AZ(él ® éZ)Bl — B, Otherw.ise,mﬁl o <, fails

po.o — Int £ pococ — T




QuickSuB
000080
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Subtyping Context ¥
Polarity Mode @ u=+|— (QSub-VarNeg)
Subtyping Results < =< | =5 o ey
Equality Var. Set S =0{x,..., o} Whg amyy) «
(QSub-RecEq) (QSub-VarPos)
YoaP g A~gB ... a? ey
Y }_@ LLOCA g/ },L(XB Y F@ X ~p X
(QSub-Fun) zslz; .zz z js;usz
WF®A251BZ WF@AI sZBI < o< = <
< < <ery; = <
v |_€B A — AZ(%I C %Z)Bl — B, Otherwise, <, o <, fails

Vpe o — Int € poox — T v Reflexive subtyping.
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QuickSub in Functional Style

Suby (Int, Int, @) =

S

( =
Sub\y(T ) = 11}
Subq:(A ) = < (IfA ;ﬁ T)
Suby («, o ) = =y (ifcx? cVv)
Suby (o, o = Rq (if x® € W)
Subly (A = Az B, — B,, @) = Subxy (AZ,AI, @) ° Sub\y(Bl,Bz, @)
Suby (L. Ay, po. A,, D) = < (if Suby y@ (A1 4, ®) = <)
Suby (o Ay, po. A,, D) = g (if Suby y@ (A1, 42, @) = ~s and x &S )
Suby (L. Ay, po. Ay, D) = =~ (otherwise)

(SUFV(A1)) \ {ec}
otherwise, Suby (A, B, @) fails

e No backtracking = O(n) traversal (n = size of types)

e Setoperations can be optimized with imperative data structures
= O(m) cost in the worst case (m = # of recursive variables)
= O(1) for practical cases
= Overall: O(mn) cost in the worst case, linear for practical cases




EVALUATION
€000

Evaluation

e Implement QuickSub in OCaml.

e Compare performance with existing algorithms:
o Amber rules
o Nominal unfolding rules
- Equivalent to Amber rules, addressing metatheory challenges.
- Though being algorithmic, not designed with efficiency in mind.
Complete iso-recursive subtyping?®.
- More expressive than Amber rules.
- Ship with an O(mn) algorithm.
o Equi-recursive subtyping® (see paper).

]

e Benchmarks for different recursive type patterns and depths.

Y. Zhou et al., “Revisiting Iso-recursive subtyping”.

%Ligatti et al., “On subtyping-relation completeness, with an application to iso-recursive
types”.

3Gapeyev et al., “Recursive subtyping revealed”.
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Nested positive subtyping, growing depths

’ —e— QuickSub —4— Amber —— Complete ‘

class A { 6 T

foo(x: Int) : A

% 41 .

class B { g

bar(y: Real) : A R

} ar(y: Real) = 2| .
}

o & . ° ® .
Complex Nested Objects LRllo) Z{E8 500l 4,000 500
Depth
wog. Int — (pog. Int — oL (Lo (o, ..., o))

For positive nested recursive subtyping, Amber and Complete are
quadratic in complexity, while QuickSub is linear.
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Benchmark results, algorithm runtime at a large depth

’ 00 Quicksub [ 0 amber [0 Complete B 8 Nominal

E ol DDIHDI HDD' HDDI DI - HDDIHDI l

disprove prove prove disprove prove prove prove worst
negative < Negative &2 positive < positive < POsitive &% mixed < positive <  €35¢ ~
(simple) ~ (simple) (nested)

e QuickSub outperforms other algorithms in most cases
o except in reflexive cases, where Amber performs faster (expected)

e Handles both simple and nested recursive types efficiently.

e Linear performance in practical scenarios.




Negative recursive subtyping, worst case

’ —e— QuickSub —4— Amber —— Complete ‘

4 —
oy, o — (o, o |
o — & — (po. =
0 — 0 — 0 — (1o, g 20 :
[=E |
) 3 S A

100 200 300 400 500

Worst Case Pattern

Depth

The worst case scenario only occurs when all variables are negative and
the subtyping result is /2, so that all variables are added to the equality
variable set S. (|S|pmax = M)

The complexity is O(mn). (m = # of variables, n = size of types).

With the imperative optimization, QuickSub still demonstrates an
efficient performance.




CoNCLUSION
°

Conclusion

QuickSub, an efficient algorithm for iso-recursive subtyping, with
linear complexity in practice.

More in the paper
e Equivalence proof to other iso-recursive subtyping formulations.
e Type soundness proof for a calculus using QuickSub.

e Extension to record types.

Future Work
e Extending QuickSub to handle more type system features.

e Applying QuickSub to deal with equi-recursive subtyping.
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