Foundationally Sound

Annotation Verifier
via Control Flow Splitting

Litao Zhou, Shanghai Jiao Tong University
Dec 7, 2022, Auckland, New Zealand

Background: How programs are verified

Interactive Program Verifiers:

Verified
Software

write formal speciﬁcations and proofs in a theorem prover

v" Foundationally sound .
v" Rich assertion language Toolchain
v" Flexible proof strategies

X Correctness properties are not clear from proof script

Background: How programs are verified

Annotation verifiers:
by writing annotations in the source code

Dafny{//
v" More automation Y [\

v Compared with formal proof scripts, annotating
programs with assertions is a more straightforward
way to demonstrate a program is correct

C
X Foundational soundness proof is often lacked a | a

Software Analyzers

VST-A: a foundationally sound annotation verifier

O

VST-A workflow

1. Users annotate C programs with
function specifications and assertions

as comments

O OO0 I N U b W DN =

10
11
12
13
14
15
16
17
18
19
20

struct list {
unsigned head;
struct list «tail;

I8

struct list sreverse (struct list «p) {
/+@ With [,
Require 11 ([p],)
Ensure 1l ([[ret], rev(l)) +/
struct list »w, «t, xv;
w = NULL; v = p;
while (v) {
/+@ Assert 31 ¢ x [,
I=rev(l) x I, A [[v] = (x,¢)
« W ([w], 1) * U(c, 1)
t = v—>tail; v—>tail = w;
w=v;Vv=t;
}

return w;

}

assertion :
primary statement :

ClightA statements :

Annotation erasing :

| @

cl

m o— — 0 — i

€1 := €y
a:=f(B)
¢p | Ci;Co

if (e) C; else C;
loop (C2) Cy

skip | break
continue | return

assert P
ExGiven x, {P(x)} C
Clight statement

VST-A worktlow

2. Annotated programs are
parsed into ClightA AST
definitions in Coq

)

©

B e s e s e e are ey

The split function

Reduce the verification problem of the whole program into smaller straight-

line Hoare triples

NULL : v = t = v->tail; l
L = NU[[7 —> = v->tail = w; return w; —»
Ps : wW=v; Vv =rt;

1

'

The split function

To verity the whole program’s Hoare triple, it is enough to verity the
following (1/4) straightline Hoare triples.

The split function

To verity the whole program’s Hoare triple, it is enough to verity the
following (2/4) straightline Hoare triples.

v = t = v->tail;

—> = v->tail = w;
? >
—— W=V, V=t; }

The split function

To verity the whole program’s Hoare triple, it is enough to verity the
following (3/4) straightline Hoare triples.

| l

:g - NULL? return w; —

The split function

To verity the whole program’s Hoare triple, it is enough to verity the
following (4/4) straightline Hoare triples.

Control flow paths separated by assertions

v —— t = v->tail; l
NU[[7 —> v->tail = w; return w; —»
: W=V, V=t \‘

10

e

|©

VST-A workflow

3. A set of straightline Hoare
triples are automatically computed
and printed into separate Coq files

4. Users are left to prove residual
proof goals that are not checked
automatically.

Proved sound

split function

split_resl.v

split_res2.v

split_res3.v

split_res4.v
Theorem.V 11l cx [,

I=rev(ly) x I A [[v] = (x,¢) *
{ W([wl, k) + 11 (e,) }

t = v—>tail; v—>tail = w;

w=vV;Vv =t; assume v;

L exy. I =rev(ly) x LA
{ [v] = (x,¢) = LW([w], L) * (e 1) }

V

Soundness of split

{ Require }

valid

valid ||

valid
|| { Require }
= C
valid { Ensure }

{ Require }

Soundness of split (sequential case)

R = Wp(pathlJ Ql)
A Wp(pathz, QZ)
A Wp(pathg, QB)

13

Features of VST-A

Correctness proofs are described intuitively by inserting assertions
Rich assertion languages and foundational soundness of VST

Assertions can be inserted in a flexible way
e.g. annotating loop structures with invariants is not compulsory

Incremental verification for incremental program development
1.e. changing part of the program only requires proof recompilation for the changed paths

Currently only supports sequential programs and requires precise
specification for callee functions

due to the need for conjunction rule in the soundness proof 14

—— — R R O R R R R R R R R R R R .

Summary

A novel framework for program verification, based on the idea of
reducing large program proofs to simpler verification goals

A formal language for annotated programs, ClightA, that not only

introduces assertions but also addresses logical variables in the verification
context

A control-flow-based verification splitting algorithm, implemented in
Coq and proved sound wi.r.t. the VST program logic

15

Thank youl

Litao Zhou, Shanghai Jiao Tong University, China

