Foundationally Sound Annotation Verifier @) s o™

Vi 3 CO nt rOI F I oW S p I itti ng Litao Zhou @ SPLASH-SRC 2022 Supervised by Qinxiang Cao

ltzhou@sjtu.edu.cn caoqinxiang@sjtu.edu.cn
Background and Motivation Contributions
Programs can be verified ... » A novel framework for program verification, based on the idea of
B by writing formal specifications and proofs in a theorem prover reducing large program proofs to simpler verification goals
v’ Foundationally sound » A formal language for annotated programs, ClightA, that not only
I XK Verified v’ Rich assertion language introduces assertions but also addresses logical variables in the
r(S SOftwar? v’ Flexible proof strategies verification context
Toolchain X Correctness properties are not » A control-flow-based verification splitting algorithm,
clear from proof script implemented in Coq and proved sound w.r.t. the VST program logic

A Verified Implementation of ML

Interactive Program Verifiers Features of VST-A

B by writing annotations in the source code v’ Correctness proofs are described intuitively by inserting assertions
Rich assertion languages and foundational soundness of VST

Assertions can be inserted in a flexible way
e.g. annotating loop structures with invariants is not compulsory

v

v

v Incremental verification for incremental program development

X Currently only supports sequential programs and requires precise

specification for callee functions
due to the need for conjunction rule in the soundness proof

VST-A: to combine the benefits of interactive program verifiers as well as the readability of annotated programs

v" More proof automation

Y AR
veriFast
Dafny v Readable proofs
v’ Straightforward to programmers
X Foundational soundness proof is

o x
Viper.t often lacked

Annotation Verifiers

VST-A Workflow — I l
struct list { I—v —>‘—>I I l 1 I_’ _‘ _’I
unsigned head; _, W = NULL
V = p; NULL?

. v o t = v->tail;
) - —_— v->tail = W, return w; —
struct list «tail; |

1

2

3 W=V, V=t]

4 } { Assert }

5 I—‘ *‘ l lI I { Ensure } ?_'I_’ —‘
6

7

8

struct list sreverse (struct list «p) {
/*@ With [,

Require 11 ([p], 1) The split function computes all the control flow paths separated by assertions for a ClightA AST
9 Ensure 1l ([ret],rev(l)) +/
10 struct list »w, *t, »v; assertion: P := split_resl.v
11 w=NULL;v = p; primary statement: ¢, := e;:=e Split resc.v
. - split_res3.v
12 while (v) { a:= f(b) \/ split_res4.v
13 /+@ Assert 31y ¢ x lé ClightA statements : C = Cp | C1;Co Theorem.V [[; ¢ x I},
14 [= rev(ll) X lé A [[V]] = (x, C) if (e) C; else C, { I=rev(ly) x I A [[v] = (x,¢) * }
15 «W([w] b)) * (e, 1) Parsing loop (C,) C Proved sound t”f{“ﬂ;fii :—1>1t(aci,lli)w; 4. Users are left
13 t = v—>tail; v—>tail = w; skip | break split function W= v:v =t assumev: to prove residual
1 w=vVv;Vv=t; . AL exl.l=rev(ly) x A
" } continue | return { Iv] ,j (x,c) * 11([[w2]|,ll) 1 (c, 1) } proofgoals that
19 return w; ::ssg'rt P = = Proof. ... are not checked
20 } xGiven x, {P(x)} \/ automatically.

Annotation erasing : C|| € Clight statement

1. Users annotate C programs with 2. Annotated programs are parsed 3. A set of straightline Hoare
function specifications and into ClightA AST definitions in Coq triples are automatically computed |
_ _ _ _ * Areas marked by this color are
assertions as comments and printed into separate Coq files user’s verification obligations
Control-flow-based Split Function Soundness of VST-A
We define an intermediate split '.I'he(?rem (Soundnetss). Foi any ClightA program C fmd pre-/pos.t-conditions P and Q,
: Basic statement : ¢, := ¢, | assumee if split(C) = {(D, P=0,p 5, P, pH} and all straightline Hoare triples below are provable:
result syntax to represent partial . ki . :
it results Assertion-free path: p_ := Ch (a) between internal assertions, P 3
Sp : Head path: p,:= P} (b) from P to Q, {P}p_—HQ} | denoted as
. o _ Tailpath: p.:= {P}c (c) from P to internal assertions, {P}p, ’ Fy {P} split(C) {Q}
The split function is defined by Fullpath: p. == {P}HP:} | Vx. po (d) from internal assertions to Q prt{Q})
recursion on the ClightA AST and Figure. Syntax for Intermediate Split Results then C|| is functionally correct w.r.t. the specification, i.e. {P} C| {Q}

returns a record of (partial) paths. PROOF DRAFT. by induction on C, case [C = C;; C;] for example:

Condition: +y {P} split(Cy;Cs) {Q}

Table. Definiti fth lit F ' |
able. Definition of the Split Function (Selected Cases) Goal: find middle condition R, s.t. Fy {P} split(C;) {?R} and v {?R} split(C;) {Q}

Fields of split(C) assert P C1;Cy if (e) C; else C,

Assertion-free paths 0 nor nor {[assumee]} - p™ Solution: R 2 conjunction of split(C,)’s weakest conditions
/ . with normal exits (p=7) P~ " U {[assume —e]} - g2 Proof of by {P} split(C1) {?R} requires the conjunction rule
Assertion-free paths nor. g*t {[assume e]} - p™*
withretum exits (o) ° U Pt U{[assume me]} - g™ ConpRuzs 2111 (Phein)
Tail paths .with ({PH} P - q" nor | j gnor {P}c{Q1 AQ2} e veeose o
normal exits (p*°") U piot Py - gegsesss s
F pl_ ° e 000 o o 00
Y s A S ok el mveeres ey wonRRs YR ok T R Remark on cOnjunctu)n Rule @ $30°eee® $° @
Spllt (C) = Tail paths with 0 P *r_e U qlr—e ret |) qgret “r: . 303 Setetese’
returnexits (pf) T Uprr gt e * The comuneton rule ';”tat“ra' " ttrad'F"’”at' ”t‘;arf 'O_g'C? for RS g ol
nor : sequential programs, but some extensions to the |0gics (e.g. 8 3s ee®® 83°°°%, *2%¢ 3 o3
Flead pathia) ((qpyy P~ 9 (lassumeelt-p, - .q Prog . HEnSIONS 1 ME DSBS Egigh 1 addl
... Upﬁu{[assumeﬁe]}q_l Wlth ghOSt updateS) WIII make thls rUIe InadmISSIbIe.:...z ...3...... ¢
Full paths (p,.) 0 p.Uq, p.Uq, * VST-Ais currently based on a more restricted variant of VST @

program logic, that removes the ghost update operator, but
. It(C)_{ or ,ret p,nor ,ret } d |t(C)"‘{ nor .ret _nor _ret } . ” h h f Scanforthe
assuming split(Cy) = {pZ", p=° P, pi° P, Py} and split(C2) = 142, 9, ¢, 4,7, 9., 9, retains all the other features. VST-A repository

