
Assertion annotated program verification
with control flow splitting

Litao Zhou
Shanghai Jiao Tong University

Shanghai, China
ltzhou@sjtu.edu.cn

Abstract
We propose a system for decomposing the verification of
assertion annotated C programs into simple Hoare triples
for sequences of basic statements. In the system, users can
write higher order assertions in C programs’ comments. Our
split functionwill analyze the control flow and collect all the
paths separated by assertions as verification goals automati-
cally. We describe a prototype system implementation VST-
A, which is developed based on Verified Software Toolchain
(VST)’s deep-embedded separation logic. We implement the
splitting function and formally verified its soundness w.r.t.
CompCert’s Clight semantics in Coq.

CCS Concepts: • Theory of computation → Separation
logic; • Program verification;

Keywords: ProgramVerification, Separation logic, Annotated
Programs, Coq

1 Overview of the framework
In this report, we present a new framework for verifying
functional correctness of imperative programs with Hoare
logic. The framework is based on the idea of splitting the
verification of an assertion-annotated program into a set of
control flow paths, so that users can achieve program cor-
rectness by verifying the correctness of each path separately.
The benefit of this approach is that it makes the verification
process modular and easy to automate. Besides, we believe
that compared with writing proof scripts in interactive ver-
ification tools like VST (Verified Software Toolchain), writ-
ing assertions directly in imperative programs ismore straight-
forward and easier to understand for software engineers.
The framework is formalized as VST-A in Coq, with a mech-
anized proof of its soundness, so that VST-A can achieve the
same foundational correctness guarantees as in VST.

Figure 1 compares the common verification workflow in
VST and our framework VST-A. VST provides a set of Hoare
logic rules, which are proved sound with respect to the se-
mantics of the language. To prove the correctness of a pro-
gram 𝑐 with respect to a pair of its pre-/post-condition spec-
ification 𝑃 and 𝑄 , users need to write a proof script in the
interactive theorem prover Coq, by applying theHoare logic
rules, and providing intermediate assertions (e.g. loop in-
variants) where necessary. The soundness of VST ensures
end-to-end correctness of the proof.

In VST-A, we would like to allow users to verify a pro-
gram by annotating programswith assertions, which consti-
tutes the core wisdom of a program’s verification. The veri-
fication workflow we advocate is depicted on the right side
of Figure 1. Users first write assertions as comments in the
source code of the programs, and then a path-splitting algo-
rithm will automatically analyze the control flow between
each two assertions and generate a set of paths {{𝑃𝑖 }𝑐𝑖 {𝑄𝑖 }}
for users to verify independently. Since control flow infor-
mation has been exploited, the commands of each path 𝑐𝑖 are
simply linear sequences of basic statements, which are left
for users to verify. After all paths have been verified, the
soundness theorem of VST-A will link them together, and
together with the soundness theorem of VST, end-to-end
verification is preserved.

The path-splitting function, and the mechanized proof of
its soundness theorem are the two major contributions of
VST-A against VST. We will introduce the path-splitting al-
gorithm and the proof idea of soundness theorem in Section
2. Section 3 will discuss the “Conjunction rule”, which we
consider as a fundamental component of this framework.

2 Path split and its soundness
2.1 Clight-A: Annotated C language
We define the annotation Clight-A syntax as an extension to
the abstract C language of CompCert Clight in Figure 2.The
Clight-A syntax provides extra constructors that allow users
to insert assertions. The syntax of assertions is the same as
defined in VST program logic, which we omit here.
The Clight-A syntax is implemented as an Inductive type

in Coq. The complete Clight-A syntax 𝐶𝑐 has two new con-
structors. Users can insert assertion 𝑃 anywhere in the pro-
gram through assert 𝑃 constructor. Besides, if the assertion
𝑃 has an existentially quantified logical variable 𝑥 (in Coq
type 𝐴), users may use the ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶𝑐 con-
structor so that assertions that come after 𝑃 (𝑥) in 𝐶𝑐 can
also refer to the logical variable 𝑥 . With the two construc-
tors, assertions in VST-A can match to the expressive power
of corresponding proof scripts in VST.
To implement the path splitting procedure as a function

in Coq, the complete Clight-A syntax𝐶𝑐 is parameterized by
a simpler syntax 𝐶𝑠 , which ignores the assertions contents
and logical variables, and only specifies the shape of the
assertion annotated program. To be specifc, the complete

Technical Report, April 2022, SJTU, Shanghai L. Zhou

Minimal Hoare logic
proof theory

Derived
proof rules

Semax-Seq
Semax-ConSeq
Semax-Assign, . . .

ExtRact-Exists,
Seq-Assoc, . . .

Logical correctness
` {𝑃}𝑐{𝑄}

Semantic correctness
⊨ {𝑃}𝑐{𝑄}

Proof rule
deriveation

Hoare logic
proofs

Hoare logic proofs

Soundness of Verifiable C
User’s Proof

(a) Framework of VST soundness

Minimal Hoare logic
proof theory

Derived
proof rules

Semax-Seq,
Semax-ConSeq,
Semax-Assign, . . .

ExtRact-Exists,
Seq-Assoc, . . .

Logical correctness
of splitted paths
∀𝑖, ` {𝑃𝑖 }𝑐𝑖 {𝑄𝑖 }

Logical correctness
` {𝑃}𝑐{𝑄}

{𝑃}𝑐{𝑄} and
annotations

Soundness of VST-A

Semantic correctness
⊨ {𝑃}𝑐{𝑄}

Proof rule
deriveation

Hoare logic
proofs

Path-splitting
function of VST-A

Soundness of Verifiable C

User’s Proof

User’s Annotation

Our Contribution

(b) Framework of VST-A soundness

Figure 1. Overview of the framework

assertion : 𝑃 := · · ·
expression : 𝑒 := · · ·

primary statement : 𝑐𝑝 := 𝑒1 := 𝑒2
| skip
| 𝑎 := 𝑓 (®𝑏)

Clight statement : 𝑐 := 𝑐𝑝
| 𝑐1; 𝑐2
| break | continue
| return 𝑒?
| if (𝑒) 𝑐1 else 𝑐2
| loop (𝑐2) 𝑐1

Simple Clight-A : 𝐶𝑠 := 𝑐 | assert
Complete Clight-A : 𝐶𝑐 := 𝑐 | assert 𝑃

| ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶𝑐

Figure 2. syntax of Clight and Clight-A

Clight-A syntax 𝐶𝑐 is implemented as a dependepent type
on a particular simple Clight-A syntax𝐶𝑠 in Coq as follows.

Inductive C_statement : S_statement -> Type := ...

Details for this design will be discussed in section 2.4

Basic statement : 𝑐𝑏 := 𝑐𝑝 | 𝑒
Path atoms : 𝑝− := ®𝑐𝑏

Path atoms with return : 𝑝ret− := ®𝑐𝑏 ; ?𝑒
Simple pre-partial path : 𝑝𝑠a := ®𝑐𝑏−{}

Complete pre-partial path : 𝑝a := ®𝑐𝑏−{𝑃}
Simple post-partial path : 𝑝𝑠` := {}−®𝑐𝑏

Complete post-partial path : 𝑝` := {𝑃}−®𝑐𝑏
| ∀(𝑥 : 𝐴). 𝑝`

Simple post-return path : 𝑝ret𝑠` := {}−®𝑐𝑏 ; 𝑒?
Complete post-return path : 𝑝ret` := {𝑃}−®𝑐𝑏 ; 𝑒?

| ∀(𝑥 : 𝐴). 𝑝return`
Simple full path : 𝑝𝑠 à := {}−®𝑐𝑏−{}

Complete full path : 𝑝 à := {𝑃1}−®𝑐𝑏−{𝑃2}
| ∀(𝑥 : 𝐴). 𝑝 à

Split result :

𝒑nor
− ,𝒑brk

− ,𝒑con
− ,𝒑ret

− ,
𝒑nor
` ,𝒑brk

` ,𝒑con
` ,𝒑ret

` ,
𝒑a,𝒑 à

Figure 3. syntax of split results

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

2.2 Split result interface
We define the syntax of the result of path splitting in Figure
3.The split result is a record type, consisting of “paths”, “par-
tial paths” and “atoms”, which are essentially a list of basic
program statements ®𝑐𝑏 annotated with two assertions, one
single assertion, and no assertions, respectively. 1 The basic
statement can either be a primary Clight statement 𝑐𝑝 or an
expression 𝑒 that introduces if conditions into the control
flow.

Recall that in VST program logic, a statement hasmultiple
post-conditions (exited normally, with break, continue, or
return with a value). Correspondingly, our split result also
makes distinctions between different exit status. The split
result is defined as a recordwith 10 fields, constituted by one
“full path”, one “partial path” that only has post-condition,
four “partial paths” that only have pre-condition and exit
with four kinds of exit status, and four “atom paths” that
exit with four kinds of exit statuses. 2 Return atom paths
and partial paths are augmented with an expression ?𝑒 that
the program may return. With these fields, the split result
record is sufficient to reveal all control flow information in
a Clight-A program.

Similar to Clight-A syntax 𝐶𝑐 , the split result is also pa-
rameterized by a simpler syntax in implementation. For sim-
ple results, the assertion is treated simply as a placeholder
and there are no logical variables involved. For full results,
each result type is a Coq Inductive type with an extra con-
structor to introduce logical variables into assertions. A com-
plete result element 𝑝 is in the dependepent type on a simple
result 𝑝𝑠 if 𝑝 and 𝑝𝑠 have the same list of basic statements.

Again, wewill show how this dependepent relation is use-
ful in the splitting function implementation in Coq in Sec-
tion 2.4.

2.3 Interpreting split result
The split result we have defined above is a collection of ba-
sic program statement sequences, probably with assertions
at the beginning or in the end. In practical settings, every
program to verify will come with a pre-conditon and a post-
condition specified by the user. By supplementing “partial
paths” or “atoms”with the pre-/post-condition from the user’s
specification, we can interpret the split result into a collec-
tion of closed Hoare triples as verification goals.

1We use ®𝑐 to denote an ordered list of items of the syntax 𝑐 . When the order
is not important, as we shall see notations like 𝒑a in the split result record,
we use the bold font to denote a set of items.
2For the sake of simplicity, we will refer to “partial paths” that only have
pre-conditions as “post-partial paths”, and “partial paths” that only have
post-conditions as “pre-partial paths”. For atom paths and post-partial
paths, there are four kinds of exit statuses. We will refer to them by adding
a prefix of the exit status name to distinguish them. For example, normal
post-partial paths are partial-paths with only post-conditions and exit in
normal status.

to_Cstm([]) = skip
to_Cstm(𝑐𝑝 :: ®𝑐 ′

𝑏
) = 𝑐𝑝 ; to_Cstm(®𝑐 ′

𝑏
)

to_Cstm(𝑒 :: ®𝑐 ′
𝑏
) = if (𝑒) skip else break;

to_Cstm(®𝑐 ′
𝑏
)

semax_pre(𝑃, ®𝑐𝑏−{𝑄}) = {𝑃} to_Cstm(®𝑐𝑏)
{
𝑄, [®>]

}
semax_atom(𝑃,𝑄, ®𝑐𝑏) = {𝑃} to_Cstm(®𝑐𝑏)

{
𝑄, [®>]

}
semax_post(𝑄, {𝑃}−®𝑐𝑏) = {𝑃} to_Cstm(®𝑐𝑏)

{
𝑄, [®>]

}
semax_post(𝑄,∀𝑥 . 𝑝`) = ∀𝑥 . semax_post(𝑄, 𝑝`)
semax_path({𝑃}−®𝑐𝑏−{𝑄}) = {𝑃} to_Cstm(®𝑐𝑏)

{
𝑄, [®>]

}
semax_path(∀𝑥 . 𝑝 à) = ∀𝑥 . semax_path(𝑝 à)

semax_atom_ret(𝑃,𝑄, ®𝑐𝑏 ; ?𝑒)
= {𝑃} to_Cstm(®𝑐𝑏); return 𝑒? {>, [>,>, 𝑄]}
semax_post_ret(𝑄, {𝑃}−®𝑐𝑏 ; ?𝑒)

= {𝑃} to_Cstm(®𝑐𝑏); return 𝑒? {>, [>,>, 𝑄]}
semax_post_ret(𝑄,∀𝑥 . 𝑝returnpost)

= ∀𝑥 .semax_post_ret(𝑄, 𝑝returnpost)

semax_split(𝑃,𝑄,𝑄brk, 𝑄con, 𝑄ret,
𝒑nor
− ,𝒑brk

− ,𝒑con
− ,𝒑ret

− ,
𝒑nor
` ,𝒑brk

` ,𝒑con
` ,𝒑ret

` ,
𝒑a,𝒑 à

)
= Forall (semax_atom 𝑃 𝑄) 𝒑nor

−
∧ Forall (semax_atom 𝑃 𝑄brk) 𝒑brk

−
∧ Forall (semax_atom 𝑃 𝑄con) 𝒑con

−
∧ Forall (semax_atom_ret 𝑃 𝑄ret) 𝒑ret

−
∧ Forall (semax_post 𝑄) 𝒑nor

`
∧ Forall (semax_post 𝑄brk) 𝒑brk

`
∧ Forall (semax_post 𝑄con) 𝒑con

`
∧ Forall (semax_post_ret 𝑄ret) 𝒑ret

`
∧ Forall (semax_pre 𝑃) 𝒑a
∧ Forall (semax_path) 𝒑 à

Figure 4. semantics of split results

To reuse the verification infrastructures, we choose to
reinterpret the split result into the Hoare triples defined by
VST. We implement the semantics interpretation procedure
as Coq functions in Figure 4.
First, the to_Cstm function converts sequences of basic

program statements into the abstract C language. Note that
the basic statements of split results no longer contain con-
trol flow instructions such as break and continue, so for
any to_Cstm(®𝑐𝑏), we only care about the case when it exits
with normal status. We assign a True assertion > to post-
condition fields other than normal. Besides, we make use
of this observation to interpret the conditional expression
𝑒 . We simply encode it into a simple if-branching structure
that exit with break if 𝑒 evaluates to false. This encoding is
safe since the break post-condition is always true, and the

Technical Report, April 2022, SJTU, Shanghai L. Zhou

path in question only cares about the case where 𝑒 evaluates
to true.

For interpreting pre-partial paths, semax_pre takes a user-
specified pre-condition 𝑃 , and interprets the result as aHoare
triple. This procedure is similar for semax_atom , the base
case for semax_post, and the base case for semax_path. For
logical variables syntactically binded to post-partial paths
or full-paths, the interpretation function will convert them
into a Coq-level universally quantification.

For return post-partial paths, since the post condition for
return is parameterized by the return value. To match the
VST program logic, we still make use of the return?𝑒 state-
ment and the returning post condition in VST during inter-
pretation. Now we only care about the control flow that ex-
its with return status, so other post-conditions are set as >.
Finally, the semax_split function takes a split result and

interprets it into a conjunction of Hoare triples. All the in-
terpretation functions are implemented in Coq as functions
with Prop as the return type, which are left for users as the
verification goals towards program correctness.

2.4 The split function
The core splitting function is a recursively defined Fixpoint
function in Coq. It takes a Clight-A program as input and
returns its split result in a record. Note that error may occur
if there is a control flow in the loop that goes through no
annotations, so in practice the function return type is the
option type of the split result. We list the splitting function
in Figure 5, and present a detailed explanation below.

Split result of primary statements. For primary state-
ments, only the normal atom path is a singleton of the state-
ment itself. The other fields are left as empty set. For control
flow related statements, their corresponding atom paths are
a singleton of an empty list of basic statements, which will
be interpreted as skip. Note the difference between empty
set and singleton of an empty list. The empty set indicates
that no possible executions will fall into the field’s corre-
sponding exit status, while the singleton of an empty list
indicates that there exists exactly one possible control flow
(which is simply skip and does nothing) in the split result.
For the assertion constructor assert 𝑃 , the split result will be
a singleton of pre-partial path with 𝑃 as its post-condition
and a singleton of normal post-partial path with 𝑃 as its pre-
condition.

Combining split results. Thesplitting of compound state-
ments is the key of the splitting function. There is a “con-
nect” operation · for sequencing two paths (probably with
assertions in the head or tail). We abuse this notation to con-
nect two set of paths, which works like multiplication, to
pointwisely sequence each path in the two set, so that all
possible control flow paths from two subprograms can be
captured in the combined result. We use++ to union two sets
of paths.

For splitting 𝑐1; 𝑐2, we first split 𝑐1 and 𝑐2 into paths 𝒑’s
and 𝒒’s3, and then construct the split result of 𝑐1; 𝑐2 by con-
necting corresponding control flow paths in 𝒑’s and 𝒒’s. For
example, the break post-partial paths have three components,
the ones from splitting 𝑐1 (𝒑brk

`), the ones from splitting 𝑐2
(𝒒brk`), and the sequencing of the normal post-partial paths
in 𝑐1 and the break atom paths in 𝑐2 (𝒑nor

` · 𝒒brk−).
The splitting of if-branching is simply adding the condi-

tional expression to the head of all pre-partial paths and
atom paths, and then union two groups of split results to-
gether. Since pre-partial paths and atom paths do not have
assertions in the head, we can ensure that they capture all
the possible execution paths where the conditional expres-
sion should be added.
The split result of loop (𝑐2) 𝑐1 is more complicated. We

need to restructure the control flow results related to break
and continue in the loop body. First, since all break or continue
related paths in the loop body will be digested by the loop
structure, in the resulting split result, there are no (post-
partial or atom) paths that exit with break or continue sta-
tuses. Next, the break post-partials (𝒑brk

` , 𝒒brk`) in the two
loop bodies become normal post-partials when viewed out-
side the loop. The break atom paths (𝒑brk

− , 𝒒brk−) in the two
loop bodieswill be combinedwith all possible pre-conditions
in the loop and also become part of normal post-partial paths
and normal atom paths. The case for return related post-
partial/atom paths works in a similar way as the case for
break. For continue paths, those in the main loop body 𝑐1
are processed similarly as normal paths - they will both ex-
ecute the incremental loop body 𝑐2 next, while for continue
paths in the incremental loop body 𝑐2, they are disallowed
to be executed, so a false post-condition ⊥ is added to con-
tinue post-partial/atom paths.

Dealing with logical variables. When splitting new ex-
istential logical variables with an ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝑐 ′
constructor, the new variable will be treated differently in
pre-partial paths and post-partial paths. For pre-partial paths,
since program assertions that appear before the ex-given
structure will not mention the new variable 𝑥 , it is safe to
move 𝑥 into the assertion 𝑃 as an existential quantifier, leav-
ing the pre-partial paths to be a singleton of []−{∃𝑥 : 𝐴. 𝑃 (𝑥)}.
There are no atom paths in the split result of ex-given struc-
tures, since the strucutre itself ensure that a pre-condition
𝑃 (𝑥) appear in the head of the program. Post-partial paths
for each exit status have two components, the post-partial
paths of the inner statement 𝑐 ′ (where 𝑥 in 𝑐 will be quan-
tified universally), and the pre-condition 𝑃 (𝑥) sequenced
with atom-paths that exit with the corresponding status. For
full paths, in addition to the closed full paths that are already

3In later sections, without special declaration, when two records of split re-
sults are involved, we will refer to contents of the first as 𝒑 with subscripts,
and the second as 𝒒 with subscripts.

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

split 𝑐𝑝 =

{[𝑐𝑝]}, ∅, ∅, ∅
∅, ∅, ∅, ∅
∅, ∅

 split break =

∅, {[]}, ∅, ∅
∅, ∅, ∅, ∅
∅, ∅

 split continue =

∅, ∅, {[]}, ∅
∅, ∅, ∅, ∅
∅, ∅

split (return 𝑒?) =

∅, ∅, ∅, {([]; ?𝑒)}
∅, ∅, ∅, ∅
∅, ∅

 split (assert 𝑃) =

∅, ∅, ∅, ∅
{{𝑃}−[]}, ∅, ∅, ∅
{[]−{𝑃}}, ∅

let split 𝑐1 =

𝒑nor
− ,𝒑brk

− ,𝒑con
− ,𝒑ret

− ,
𝒑nor
` ,𝒑brk

` ,𝒑con
` ,𝒑ret

` ,
𝒑a,𝒑 à

 and split 𝑐2 =

𝒒nor− , 𝒒brk− , 𝒒con− , 𝒒ret− ,
𝒒nor` , 𝒒brk` , 𝒒con` , 𝒒ret` ,
𝒒a, 𝒒 à

split (𝑐1; 𝑐2) =

𝒑nor
` ++ 𝒑nor

` · 𝒒nor− ,
𝒑brk
` ++ 𝒒brk` ++ 𝒑nor

` · 𝒒brk− ,
𝒑con
` ++ 𝒒con` ++ 𝒑nor

` · 𝒒con− ,
𝒑ret
` ++ 𝒒ret` ++ 𝒑nor

` · 𝒒ret− ,
𝒑nor
− · 𝒒nor− ,

𝒑brk
− ++ 𝒑nor

− · 𝒒brk− ,
𝒑con
− ++ 𝒑nor

− · 𝒒con− ,
𝒑ret
− ++ 𝒑nor

− · 𝒒ret− ,
𝒑a++ 𝒑nor

− · 𝒒a,
𝒑 à++ 𝒒 à

split (if (𝑒) 𝑐1 else 𝑐2) =

𝒑nor
` ++ 𝒒nor`

𝒑brk
` ++ 𝒒brk`

𝒑con
` ++ 𝒒con`

𝒑ret
` ++ 𝒒ret`

{[𝑒]} · 𝒑nor
− ++ {[¬𝑒]} · 𝒒nor−

{[𝑒]} · 𝒑brk
− ++ {[¬𝑒]} · 𝒒brk−

{[𝑒]} · 𝒑con
− ++ {[¬𝑒]} · 𝒒con−

{[𝑒]} · 𝒑ret
− ++ {[¬𝑒]} · 𝒒ret−

{[𝑒]} · 𝒑a++ {[¬𝑒]} · 𝒒a,
𝒑 à++ 𝒒 à

split (loop (𝑐2) 𝑐1) = if (𝒑nor

− ++ 𝒑con
−) · 𝒒nor− ≠ ∅ then Error

else

𝒑brk
` ++ 𝒒brk` ++ (𝒑nor

` ++ 𝒑con
` ++ 𝒒nor` · (𝒑nor

− ++ 𝒑con
−) · 𝒒brk− ++ (𝒒nor` ++ (𝒑nor

` ++ 𝒑con
`) · 𝒒nor−) · 𝒑brk

− ,
∅,
∅,
𝒑ret
` ++ 𝒒ret` ++ (𝒑nor

` ++ 𝒑con
` ++ 𝒒nor` · (𝒑nor

− ++ 𝒑con
−)) · 𝒒ret− ++ (𝒒nor` ++ (𝒑nor

` ++ 𝒑con
`) · 𝒒nor−) · 𝒑ret

− ,
𝒑brk
− ++ (𝒑nor

− ++ 𝒑con
−) · 𝒒brk− ,

∅,
∅,
𝒑ret
− ++ (𝒑nor

− ++ 𝒑con
−) · 𝒒ret− ,

𝒑a++ (𝒑nor
− ++ 𝒑con

−) · (𝒒a++ 𝒒con− · {[]−{⊥}}),
𝒑 à++ 𝒒 à++ 𝒒nor` · 𝒑a++ 𝒒con` · {[]−{⊥}})
++ (𝒑nor

` ++ 𝒑con
` ++ 𝒒nor` · (𝒑nor

− ++ 𝒑con
−)) · (𝒒a++ 𝒒nor− · 𝒑a++ 𝒒con− · {[]−{⊥}})

split (ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝑐1) =

∅, ∅, ∅, ∅
𝒑nor
` ++ {{𝑃}−[]} · 𝒑nor

−
𝒑brk
` ++ {{𝑃}−[]} · 𝒑brk

−
𝒑con
` ++ {{𝑃}−[]} · 𝒑con

−
𝒑ret
` ++ {{𝑃}−[]} · 𝒑ret

−
{[]−{∃𝑥 : 𝐴. 𝑃 (𝑥)}},
𝒑 à++ {{𝑃}−[]} · 𝒑a

Figure 5. Split function

split and collected in 𝑐 ′, we also need to sequence the pre-
condition 𝑃 (𝑥) to the pre-partial paths in 𝑐 ′. Note that this
connecting operation requires unifying the existential vari-
able 𝑥 with the one in pre-partial paths split from 𝑐 , so that
the logical variable 𝑥 can be shared among the pre-/post-
conditions of each combined full path.

A technical issue arises in implementing the split func-
tion for ex-given structure. We encode the quantification of
logical variables as function types in Coq as follows

Inductive C_statement' : Type :=
| Cexgiven' (A:Type)

(ass: A -> assert) (stm': A -> C_statement')
| ...

Technical Report, April 2022, SJTU, Shanghai L. Zhou

.
If we were to implement a recursive splitting function on
C_statement’, we can at most get the split result of the inner
statement stm’ in the form of
(fun a => split (stm' a)) : A -> split_result.
However, to construct the split result of ex-given structure,
we need to extract each individual split result that are of
the type A -> some_path from the the abstracted inner split
result that is of the type A -> split_result.
To address this issue, we design the Clight-A syntax and

the split result interface to be of Coq dependepent types
on simpler syntaxes. The simpler syntaxes erase the logical
variables and preserve only the shape of the Clight-A pro-
gram or the split result. Now the Clight-A syntax and split
function signature in Coq are as follows.
Inductive S_statement : Type :=
| Sassert
| Ssequence (c1 c2 : S_statement)
| ...
.

Inductive C_statement : S_statement -> Type :=
| Cexgiven: forall (A:Type)

(ass: A -> assert)
(c: S_statement)
(stm': A -> C_statement c),
C_statement ((Ssequence Sassert c))

| Cassert : assert -> C_statement Sassert
| ...
.

Inductive S_result : Type :=

Inductive C_result : S_result -> Type :=

Fixpoint S_split (s: S_statement) : S_result.

Fixpoint C_split (s: S_statement)
(c: C_statement s) : C_result (S_split s).
Now, the split result of inner statement 𝑐 ′ is dependepent

on a simpler result that is not abstracted by the logical vari-
able’s type 𝐴, we are able to perform pattern-matching on
the simpler result, and extract individual paths out from the
packed split result abstracted by 𝐴.

2.5 Soundness
To ensure end-to-end corretness of our framework, we for-
malized the soundness theorem of the split function in Coq
based on VST.The soundness theorem states that, given any
program with its pre-/post-condition, if all Hoare triples in
its split result can be verified, then the original statement
should be provable.

Theorem 2.1 (Soundness). For any Clight-A program 𝑝 , pre-
condition 𝑃 and post-conditions ®𝑄 , if split 𝑝 ≠ Error and
semax_split(𝑃, ®𝑄, split 𝑝) holds, then Hoare triple {𝑃} 𝑝

{
®𝑄
}

holds. 4.

The soundness theorem is proved by induction on the
statement to be split. Almost all of the soundness proof can
be done on a logical level except one lemma (the conjunc-
tion rule, which will be proved in Section 3).TheHoare logic
rules we uses are presented in Figure 6 and 8. We use Σ; Γ
to represent the proof context of logical variables and pure
propositions that can be used to derive Hoare triples in the
logical rules, but we will omit them in following text since
they stays the same or the change of proof context is easy
to be recognized.
The rules are formalized in a deeply embedded fashion,

i.e. as an Inductive relation in Coq. The benefit of deeply
embedded Hoare logic formalization is that it makes a rich
bundle of derived rules readily available, a few of which are
shown in Figure 7. We also make use of the following inver-
sion lemmas when proving the soundness of our splitting
function.

Lemma2.2 (Inversion on sequencing). If {𝑃} 𝑐1; 𝑐2
{
𝑄, [®𝑄 ′]

}
,

then {𝑃 ′} 𝑐1
{
∃𝑅 : assert. 𝑅 ∧ {𝑅} 𝑐2

{
𝑄, [®𝑄 ′]

}
, [®𝑄 ′]

}
.

Lemma 2.3 (Inversion on if-branching).
If {𝑃} if (𝑏) 𝑐1 else 𝑐2

{
𝑄, [®𝑄 ′]

}
, then

𝑃 ⊨ ∃𝑃 ′ : assert, 𝑃 ′

∧{𝑃 ′ ∧ È𝑏É = true} 𝑐1
{
𝑄, [®𝑄 ′]

}
∧{𝑃 ′ ∧ È𝑏É = false} 𝑐2

{
𝑄, [®𝑄 ′]

}
Lemma 2.4 (Inversion on skip).
If {𝑃} skip

{
𝑄, [®𝑄 ′]

}
, then 𝑃 ⊨ 𝑄

Lemma 2.5 (Inversion on break).
If {𝑃} break {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}, then 𝑃 ⊨ 𝑄brk

The split results of basic operations are sound by defini-
tion. In fact, during the proof, we do not even need to look at
the detailed rules for primary statements, since we choose
to interpret the split result in the same way as the original
statement. For control flow statements such as break, apply-
ing the inversion Lemma 2.4 to the corresponding control
flow path can complete the proof. The rest of this section
will focus on proving the soundness for compound state-
ments.

4In the Hoare triple, all assertions in 𝑝 are removed to match the Clight
syntax. The translation is straightforward, simply by replacing assertions
with a skip command in the Clight language.

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

Semax-Conseq
Σ; Γ; 𝑃1 ⊨ 𝑃2 Σ; Γ;𝑅2 ⊨ 𝑅1 Σ; Γ;𝑅′

2 ⊨ 𝑅
′
1 Σ; Γ ` {𝑃2} 𝑐

{
𝑅2, [®𝑅′

2]
}

Σ; Γ ` {𝑃1} 𝑐
{
𝑅1, [®𝑅′

1]
}

Semax-SKip
Σ; Γ ` {𝑃} skip

{
𝑃, [®𝑄]

} Semax-BReaK
Σ; Γ ` {𝑄brk} break {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Semax-Continue
Σ; Γ ` {𝑄con} continue {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Semax-RetuRn
Σ; Γ ` {𝑄ret} return {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Semax-Seq
Σ; Γ ` {𝑃} 𝑐1

{
𝑅, [®𝑄 ′]

}
Σ; Γ ` {𝑅} 𝑐2

{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {𝑃} 𝑐1; 𝑐2

{
𝑄, [®𝑄 ′]

}
Semax-If

Σ; Γ ` {𝑃 ∧ È𝑏É = true} 𝑐1
{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {𝑃 ∧ È𝑏É = false} 𝑐2

{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {𝑃} if (𝑏) 𝑐1 else 𝑐2

{
𝑄, [®𝑄 ′]

}
Semax-Loop

Σ; Γ ` {𝐼 } 𝑐 {𝐼con, [𝑄, 𝐼con, 𝑄ret]} Σ; Γ ` {𝐼con} 𝑐incr {𝐼 , [𝑄,⊥, 𝑄ret]}
Σ; Γ ` {𝐼 } loop (𝑐incr) 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Figure 6. Proof rules of C Hoare logic

ExtRact-Exists
Σ;𝑥 : 𝐴; Γ ` {𝑃} 𝑐

{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {∃𝑥 : 𝐴. 𝑃} 𝑐

{
𝑄, [®𝑄 ′]

} ExtRact-PuRe
pure(𝑃pure) Σ; Γ; 𝑃pure ` {𝑃} 𝑐

{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {𝑃pure ∧ 𝑃} 𝑐

{
𝑄, [®𝑄 ′]

}
Seq-Assoc

Σ; Γ ` {𝑃} 𝑐1; (𝑐2; 𝑐3)
{
𝑄, [®𝑄 ′]

}
Σ; Γ ` {𝑃} (𝑐1; 𝑐2); 𝑐3

{
𝑄, [®𝑄 ′]

} NoContinue
𝑐 contains no continue Σ; Γ ` {𝑃} 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Σ; Γ ` {𝑃} 𝑐
{
𝑄, [𝑄brk, 𝑄

′
con, 𝑄ret]

}
NoBReaK

𝑐 contains no break Σ; Γ ` {𝑃} 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}
Σ; Γ ` {𝑃} 𝑐

{
𝑄, [𝑄 ′

brk, 𝑄con, 𝑄ret]
}

NoRetuRn
𝑐 contains no return Σ; Γ ` {𝑃} 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Σ; Γ ` {𝑃} 𝑐
{
𝑄, [𝑄brk, 𝑄con, 𝑄

′
ret]

}
Figure 7. Derived rules from C Hoare logic

Weakest pre-condition from inversion lemmas. Con-
sider the soundness of splitting sequential composition 𝑐1; 𝑐2.
By the rule semax-seq, we need to find an intermediate as-
sertion 𝑅 to derive {𝑃} 𝑐1; 𝑐2

{
®𝑄
}
. Intuitively, the interme-

diate assertion 𝑅 should be the conjunction of the strongest

weakest pre-conditions of each control flow in the second
statement.
The VST higher order assertion allows us to write an ex-

plicit representation of weakest pre-condition in the asser-
tion language, justified by the following lemma.

Technical Report, April 2022, SJTU, Shanghai L. Zhou

Lemma2.6. For any program 𝑐 and post-condition ®𝑄 , it holds
that {∃𝑃 : assert. 𝑃 ∧ {𝑃} 𝑐

{
®𝑄
}
} 𝑐

{
®𝑄
}
.

If we take a closer look at Lemma 2.2, it is essentially stat-
ing that the weakest pre-condition of the second statement
can be used to serve as the intermediate assertion for se-
quential composition. Based on Lemma 2.2, we can prove
for each type of paths in the split results a corresponding
inversion lemma on the · operator.

Proposition 2.7 (Inversion lemmas for split results).
1. If semax_atom(𝑃,𝑄, 𝑝− · 𝑞−), then

semax_atom(𝑃, ∃𝑅. 𝑅 ∧ semax_atom(𝑅,𝑄, 𝑞−), 𝑝−)
2. If semax_atom_ret(𝑃,𝑄, 𝑝− · 𝑞ret−), then

semax_atom(𝑃, ∃𝑅. 𝑅∧semax_atom_ret(𝑅,𝑄, 𝑞ret−), 𝑝−)
3. If semax_pre(𝑃, 𝑝− · 𝑞a), then

semax_atom(𝑃, ∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝑞a), 𝑝−)
4. If semax_post(𝑄, 𝑝` · 𝑞−), then

semax_post(𝑄, ∃𝑅. 𝑅 ∧ semax_atom(𝑅,𝑄, 𝑞−), 𝑝`)
5. If semax_post_ret(𝑄, 𝑝` · 𝑞ret−), then

semax_post(𝑄, ∃𝑅. 𝑅 ∧ semax_atom_ret(𝑅,𝑄, 𝑞ret−), 𝑝`)
6. If semax_path(𝑝` · 𝑞a), then

semax_post(∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝑞a), 𝑝`)

The inversion lemma also holds for the case where the
first argument of · is a post-partial pathwith quantified struc-
tures. Consider item 4 in Proposition 2.7, for example, the
proof can be done by induction on 𝑝`. When 𝑝` = ∀𝑥 . 𝑝 ′

`, we
know that∀𝑥 .semax_post(𝑄, 𝑝 ′

` ·𝑞−).The goal can be simpli-
fied as∀𝑥 .semax_post(𝑄, ∃𝑅. 𝑅∧semax_atom(𝑅,𝑄, 𝑞−), 𝑝 ′

`),
which can be proved directly from the induction hypothesis.

Combining weakest pre-conditions. With Proposition
2.7, we can collect the intermediate assertions for each con-
trol flow that crosses the two sub-statements, but to apply
the logical rules for the original Clight program, we need to
combine all the intermediate assertions into one.

We start with combining intermediate assertions for the
same type of paths in the split result. Note that the · operator
works on a set of paths instead of individual path in the
split function, so Proposition 2.7 should be extended to the
following form 5

Proposition 2.8 (Grouped Inversion lemmas).
1. If 𝒒− ≠ ∅ and semax_atom(𝑃,𝑄,𝒑− · 𝒒−), then

semax_atom(𝑃, ∃𝑅. 𝑅 ∧ semax_atom(𝑅,𝑄, 𝒒−),𝒑−)
2. If 𝒒ret− ≠ ∅ and semax_atom_ret(𝑃,𝑄,𝒑− · 𝒒ret−), then

semax_atom(𝑃, ∃𝑅. 𝑅∧semax_atom_ret(𝑅,𝑄, 𝒒ret−),𝒑−)
3. If 𝒒a ≠ ∅ and semax_pre(𝑃,𝒑− · 𝒒a), then

semax_atom(𝑃, ∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝒒a),𝒑−)
4. If 𝒒− ≠ ∅ and semax_post(𝑄,𝒑` · 𝒒−), then

semax_post(𝑄, ∃𝑅. 𝑅 ∧ semax_atom(𝑅,𝑄, 𝒒−),𝒑`)

5We will abuse notations like semax_path(𝒑 à) where 𝒑 à is a set of paths
to represent (Forall semax_path 𝒑 à) in the following report.

5. If 𝒒ret− ≠ ∅ and semax_post_ret(𝑄,𝒑` · 𝒒ret−), then
semax_post(𝑄, ∃𝑅. 𝑅∧semax_atom_ret(𝑅,𝑄, 𝒒ret−),𝒑`)

6. If 𝒒a ≠ ∅ and semax_path(𝒑` · 𝒒a), then
semax_post(∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝒒a),𝒑`)

Proposition 2.8 can be proved by induction fisrt on the
size of set on the LHS of the · operator then on the size
of set on the RHS. The induction on the LHS argument is
straightforward, since the intermediate assertionswe obtain
from the inversion lemmas are the same if we fix the RHS
argument. Consider the case for the second induction when
proving Proposition 2.8 (4). Assume 𝒒− = 𝑞− :: 𝒒′−. Apply-
ing Proposition 2.7 (4) to 𝑞− we get

semax_post(∃𝑅1 . semax_pre(𝑅1, 𝑞−),𝒑`)
. The induction hypothesis gives

semax_post(∃𝑅2 . semax_pre(𝑅2, 𝒒
′
−),𝒑`)

. Let 𝑅 be 𝑅1 ∧ 𝑅2, we can derive that
∃𝑅1 . semax_pre(𝑅1, 𝑞−) ∧ ∃𝑅2 . semax_pre(𝑅2, 𝒒′−)

⊨ ∃𝑅. semax_pre(𝑅, 𝒒−)
To finish the proof, we need to have the following lemmas
to enable conjunction on post-condition:

Proposition 2.9 (Conjunction rule on paths).
1. If semax_post(𝑄1, 𝑞`) and semax_post(𝑄2, 𝑞`),

then semax_post(𝑄1 ∧𝑄2, 𝑞`)
2. If semax_atom(𝑃,𝑄1, 𝑞−) and semax_atom(𝑃,𝑄2, 𝑞−),

then semax_atom(𝑃,𝑄1 ∧𝑄2, 𝑞−)
3. If semax_atom_ret(𝑃,𝑄1, 𝑞

ret
−)

and semax_atom_ret(𝑃,𝑄2, 𝑞
ret
−),

then semax_atom_ret(𝑃,𝑄1 ∧𝑄2, 𝑞
ret
−)

4. If semax_post(𝑄1, 𝒒`) and semax_post(𝑄2, 𝒒`),
then semax_post(𝑄1 ∧𝑄2, 𝒒`)

5. If semax_atom(𝑃,𝑄1,𝒑−) and semax_atom(𝑃,𝑄2,𝒑−),
then semax_atom(𝑃,𝑄1 ∧𝑄2,𝒑−)

6. If semax_atom_ret(𝑃,𝑄1,𝒑ret
−)

and semax_atom_ret(𝑃,𝑄2,𝒑ret
−),

then semax_atom_ret(𝑃,𝑄1 ∧𝑄2,𝒑ret
−)

The above propositions require the underlying program
logic to be able to derive the Conjunction Rule, stated as fol-
lows.

Theorem2.10 (Conjunction Rule). if Hoare triples {𝑃} 𝑐
{
𝑄1, [®𝑄 ′

1]
}

and {𝑃} 𝑐
{
𝑄1, [®𝑄 ′

2]
}
are derivable, then {𝑃} 𝑐

{
𝑄1 ∧𝑄2, [®𝑄 ′

1 ∧ ®𝑄 ′
2]

}
is derivable holds.

However, the conjunction rule is not ubiquitous among
Hoare logic variants proposed in literatures. For example,
the current VST program logic cannot derive the conjunc-
tion rule. We will leave the discussion of the conjunction
rule to Section 3. For now, we assume that the conjunction
rule is available, so that we construct the intermediate as-
sertion for Semax-Seq as follows:

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

𝑅 =

∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝒒a)

∧semax_atom(𝑅,𝑄, 𝒒nor−)
∧semax_atom(𝑅,𝑄brk, 𝒒brk−)
∧semax_atom(𝑅,𝑄con, 𝒒con−)
∧semax_atom_ret(𝑅,𝑄ret, 𝒒ret−)

Wecan next prove that semax_split(𝑃, 𝑅,𝑄brk, 𝑄con, 𝑄ret, split 𝑐1)

and semax_split(𝑅,𝑄,𝑄brk, 𝑄con, 𝑄ret, split 𝑐2) holds from
the premise that semax_split(𝑃,𝑄,𝑄brk, 𝑄con, 𝑄ret, split 𝑐1; 𝑐2)
using the inversion lemmas and the conjunction rule. The
fact that our split function collects all the control flow paths
separated by user-provided assertions guarantees that this
operation is feasible. Next, by applying the induction hy-
pothesis, we obtain that {𝑃} 𝑐1 {𝑅, [𝑄brk, 𝑄con, 𝑄ret]} and
{𝑅} 𝑐2 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]} are derivable, which leads to
the soundness for split 𝑐1; 𝑐2

Soundness of splitting loop. Similarly, for soundness of
split loop (𝑐2) 𝑐1, we construct the loop invariant 𝐼 and the
invariant for the incremental step 𝐼con required by Semax-Loop
as follows:

𝐼 =

∃𝑅. 𝑅 ∧ semax_pre(𝑅,𝒑a)
∧semax_pre(𝑅, (𝒑nor

− ++ 𝒑con
−) · 𝒒a)

∧semax_atom(𝑅,⊥, (𝒑nor
− ++ 𝒑con

−) · 𝒒con−)
∧semax_atom(𝑅,𝑄,𝒑brk

−)
∧semax_atom(𝑅,𝑄, (𝒑nor

− ++ 𝒑con
−) · 𝒒brk−)

∧semax_atom_ret(𝑅,𝑄ret,𝒑ret
−)

∧semax_atom_ret(𝑅,𝑄ret, (𝒑nor
− ++ 𝒑con

−) · 𝒒ret−)

𝐼con =

∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝒒a)
∧semax_pre(𝑅, 𝒒nor− · 𝒑a)
∧semax_atom(𝑅,⊥, 𝒒con−)
∧semax_atom(𝑅,𝑄, 𝒒brk−)
∧semax_atom(𝑅,𝑄, 𝒒nor− · 𝒑brk

−)
∧semax_atom_ret(𝑅,𝑄ret, 𝒒ret−)
∧semax_atom_ret(𝑅,𝑄ret, 𝒒nor− · 𝒑ret

−)

By inversion from the premise that
semax_split(𝑃,𝑄,𝑄brk, 𝑄con, 𝑄ret, split (loop (𝑐2) 𝑐1))

, we can also derive the twoHoare triples required by Semax-Loop
and prove split (loop (𝑐2) 𝑐1) sound.

Soundness of if-branching. The key for this case is to
show that it is safe to translate the conditional expression
statement into the pre-condition.

Recall the interpretation functionwe have defined for con-
ditional expression:

to_Cstm([𝑒]) = if (𝑒) skip else break

. To translate from them, we make use of the inversion lem-
mas that are available in deep-embedded VST program logic.
The following propositions can be derived from the Lemma
2.3, 2.4 and 2.5.

Proposition 2.11 (Conditional Expression lemmas).
1. If semax_pre(𝑃, {[𝑒]} · 𝒑a), then

semax_pre(𝑃 ∧ È𝑒É = true,𝒑a)
2. If semax_atom(𝑃,𝑄, {[𝑒]} · 𝒑−), then

semax_atom(𝑃 ∧ È𝑒É = true, 𝑄,𝒑−)
3. If semax_atom_ret(𝑃,𝑄, {[𝑒]} · 𝒑ret

−), then
semax_atom_ret(𝑃 ∧ È𝑒É = true, 𝑄,𝒑ret

−)

We show the proof detail for item 1.

Proof. Weconsider any pre-partial path 𝑝a in𝒑a. FromPropo-
sition 2.7 (3), we have that

{𝑃} to_Cstm([𝑒])
{
∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝑝a), [®⊥]

}
Applying lemmas 2.3, 2.4, and 2.5, we obtain

𝑃 ⊨ ∃𝑃 ′ : assert, 𝑃 ′

∧(𝑃 ′ ∧ È𝑒É = true ⊨ ∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝑝a))
∧(𝑃 ′ ∧ È𝑒É = false ⊨ ⊥)

By Semax-Conseq, to prove semax_pre(𝑃 ∧È𝑒É = true, 𝑝a),
we only need to show

for any 𝑃 ′, if
𝑃 ′ ∧ È𝑒É = true ⊨ ∃𝑅. 𝑅 ∧ semax_pre(𝑅, 𝑝a)
𝑃 ′ ∧ È𝑒É = false ⊨ ⊥

then semax_pre(𝑃 ′ ∧ È𝑒É = true, 𝑝a)
which follows directly from the fact that

semax_pre(∃𝑅. semax_pre(𝑅, 𝑝a)), 𝑝a)
□

After transformation using Proposition 2.11 in the premise
of the soundness theorem, the induction hypothesis can be
directly applied to complete the proof.We omit the dual case
where the ¬𝑒 branch is taken.

Soundness of ex-given structure. The premise that

semax_split(𝑃0, ®𝑄, split (ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝑐 ′))
leads to the following two propositions.

1. 𝑃0 ⊨ ∃𝑥 : 𝐴. 𝑃 (𝑥)
2. ∀𝑥 : 𝐴. semax_split(𝑃 (𝑥), ®𝑄, split (𝑐 ′))
The first proposition can be obtained from the pre-partial

path {[]−{∃𝑥 : 𝐴. 𝑃 (𝑥)}}. The second proposition can be ob-
tained from the rest of the fields in the split result.The sound-
ness proof is done by first by applying Semax-Conseq to
transform the pre-condition of the triple to be ∃𝑥 : 𝐴. 𝑃 (𝑥).
Next, the ExtRact-Exists rule is used to introduce the ex-
istentially quantified 𝑥 into the proof context. Then the in-
duction hypothesis and the second proposition above are
applied to complete the proof.

3 Conjunction rule
The key missing ingredient of the soundness proof in the
previous section is the conjunction rule (Theorem 2.10).

Technical Report, April 2022, SJTU, Shanghai L. Zhou

3.1 Proving the conjunction rule in VST
The current VST program logic, as an impredicative higher
order concurrent separation logic, does not imply the con-
junction rule. Tomake the conjunction rule available in VST-
A, the logical rules we have presented in Figure 6 and 8 is
actually a stronger (but still sound) variant of the current
VST program logic. To be specific, we remove logical oper-
ators related to concurrency, and add extra constraints to
Semax-Call.

We present a proof draft for the conjunction rule of our
stronger logical system below. We will leave some of the
goals that require model-level insights of VST underlying
semantics to the proceeding sections.

Theorem3.1 (Conjunction Rule). if Hoare triples {𝑃} 𝑐
{
𝑄1, [®𝑄 ′

1]
}

and {𝑃} 𝑐
{
𝑄1, [®𝑄 ′

2]
}
are derivable, then {𝑃} 𝑐

{
𝑄1 ∧𝑄2, [®𝑄 ′

1 ∧ ®𝑄 ′
2]

}
is derivable.

Proof. We prove by induction on the statement 𝑐 .
• 𝑐 = skip. Applying Lemma 2.4 on premises we get
𝑃 ⊨ 𝑄1 and 𝑃 ⊨ 𝑄2. Thus, 𝑃 ⊨ 𝑄1 ∧ 𝑄2 is derivable,
and the result follows from Semax-SKip. The proof is
simiar when 𝑐 is break, continue, and return?𝑒 .

• 𝑐 = 𝑐1; 𝑐2. Applying Lemma 2.2 on premises we get

{𝑃} 𝑐1
{
∃𝑅1 . 𝑅1 ∧ {𝑅1} 𝑐2

{
𝑄1, [®𝑄 ′

1]
}
, [®𝑄 ′

1]
}

{𝑃} 𝑐1
{
∃𝑅2 . 𝑅2 ∧ {𝑅2} 𝑐2

{
𝑄2, [®𝑄 ′

2]
}
, [®𝑄 ′

2]
}

We can apply the induction hypothesis of 𝑐1 andmake
use of Semax-Conseq to obtain

{𝑃}𝑐1

∃𝑅. 𝑅
∧{𝑅} 𝑐2

{
𝑄1, [®𝑄 ′

1]
}

∧{𝑅} 𝑐2
{
𝑄2, [®𝑄 ′

2]
} ,

[
®𝑄 ′
1 ∧ ®𝑄 ′

2

]
where 𝑅 can be taken as 𝑅1∧𝑅2. According to Semax-
Seq, we are left to prove

∃𝑅. 𝑅
∧{𝑅} 𝑐2

{
𝑄1, [®𝑄 ′

1]
}

∧{𝑅} 𝑐2
{
𝑄2, [®𝑄 ′

2]
}

 𝑐2
{

𝑄1 ∧𝑄2,[
®𝑄 ′
1 ∧ ®𝑄 ′

2

] }
Using ExtRact-Exists and ExtRact-PRop we can ex-
tract 𝑅 and the two Hoare triples into the proof con-
text. By applying the induction hypothesis of 𝑐2 on
the two Hoare triples, we can obtain the result.

• 𝑐 = if (𝑒) 𝑐1 else 𝑐2. By Lemma 2.3, we can obtain 𝑅1

and 𝑅2 and the following triples in the proof context:

{𝑅1 ∧ È𝑒É = true} 𝑐1
{
𝑄1, [®𝑄 ′

1]
}

{𝑅1 ∧ È𝑒É = false} 𝑐2
{
𝑄1, [®𝑄 ′

1]
}

{𝑅2 ∧ È𝑒É = true} 𝑐1
{
𝑄2, [®𝑄 ′

2]
}

{𝑅2 ∧ È𝑒É = false} 𝑐2
{
𝑄2, [®𝑄 ′

2]
}

Both 𝑅1 and 𝑅2 are derivable from 𝑃 , and the result
follows by applying the induction hypothesis on re-
spective triples.

• 𝑐 = loop (𝑐2) 𝑐1. The inversion lemma for loop struc-
tures will provide two pair of loop invariants 𝐼1, 𝐼 𝑖𝑛𝑐𝑟1

and 𝐼2, 𝐼 𝑖𝑛𝑐𝑟2 for the two premises respectively, where
𝐼1 and 𝐼2 are derivable from 𝑃 , together with the fol-
lowing triples available:

{𝐼1} 𝑐1
{
𝐼 𝑖𝑛𝑐𝑟1 , [𝑄1, 𝐼

𝑖𝑛𝑐𝑟
1 , 𝑄 ′

𝑟𝑒𝑡1]
}

{𝐼 𝑖𝑛𝑐𝑟1 } 𝑐2
{
𝐼1, [𝑄1,⊥, 𝑄 ′

𝑟𝑒𝑡1]
}

{𝐼2} 𝑐1
{
𝐼 𝑖𝑛𝑐𝑟2 , [𝑄2, 𝐼

𝑖𝑛𝑐𝑟
2 , 𝑄 ′

𝑟𝑒𝑡2]
}

{𝐼 𝑖𝑛𝑐𝑟2 } 𝑐2
{
𝐼2, [𝑄2,⊥, 𝑄 ′

𝑟𝑒𝑡2]
}

Similarly, we can strengthen the pre-condition to be
𝐼1∧ 𝐼2 and 𝐼 𝑖𝑛𝑐𝑟1 ∧ 𝐼 𝑖𝑛𝑐𝑟2 respectively, so that we can use
the induction hypothesis to combine the two triples
for 𝑐1 and 𝑐2 into one, which completes the proof.

□

Above, we have proved most of the inductive cases for
the conjunction rule, except the cases where the statement
𝑐 belongs to primary statements, namely memory loading,
memorywriting and function calls. Proving the conjunction
rule for these base cases is non-trivial, since VST is a rich
logical system with support for fractional permissions [? ?]
and function calls with subsumptions [?]. Attempts to prove
these cases on logical level have failed. We need model-level
insights into VST underlying semantics. The rest of this sec-
tion will demonstrate that the conjunction rule still holds
under the settings of VST, so that assertions in VST-A can
enjoy the rich features provided by VST. During the proof,
we will also identify a key property, which is referred to
as “preciseness”, to be necessary for primary operations to
derive the conjunction rule.

3.2 Conjunction rule for memory load
For primary statements like assignment and function calls,
in previous parts of this report, we do not care about their
semantics. Since our framework interpret them in the same
way as the original program, the concrete semantics do not
affect the soundness of the split function, as long as the pro-
gram logic provides the conjunction rule. However, to prove
the conjunction rule, we need to take a closer look.
The logical rules for primary statements have been pre-

sented in Figure 8. We begin with rules related to assign-
ment statements 𝑒1 := 𝑒2.
We use 𝑝 ↦→𝜋 𝑣 to describe a singleton heap containing

value 𝑣 at address 𝑝 , with permission-share 𝜋 . The predi-
cate can correspond to either the “address_mapsto” or the
“mapsto” predicate (the derived form of the former) in VST,
depending on the reasoning level. In VST, the ↦→ predicate
is also parameterized with the C-type of 𝑣 to enable C-type

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

Semax-Set
Σ; Γ ` {▷ (𝑒 ⇓ ∧𝑃 [𝑒/x])} x := 𝑒

{
𝑃, [®⊥]

}
Semax-Load

𝜋 is readable share
Σ; Γ ` {▷ (&𝑒 ⇓ 𝑝 ∧ (𝑝 ↦→𝜋 𝑣 ∗ True) ∧ 𝑃 [𝑣/x])} x := 𝑒

{
𝑃, [®⊥]

}
Semax-StoRe

𝜋 is writable share
Σ; Γ ` {▷ (&𝑒1 ⇓ 𝑝 ∧ 𝑒2 ⇓ 𝑣 ′ ∧ 𝑝 ↦→𝜋 𝑣 ∗ (𝑝 ↦→𝜋 𝑣 ′ −∗ 𝑃))} 𝑒1 := 𝑒2

{
𝑃, [®⊥]

}
Semax-Call

Δ(𝑓) = 𝜙 𝜙 is a precise specification 𝜙 <: [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄}
Σ; Γ ` {▷(®𝑒 ⇓ ®𝑏 ∧ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 a ®𝑥 −∗ 𝑅))} a := 𝑓 (®𝑒)

{
𝑅, [®⊥]

}
Figure 8. Proof rules of primary C assignment commands

checking verification. We will abuse the notation of map-
sto(↦→), and omit the type-checking parameter in this re-
port.

The ▷𝑃 predicate is a higher-order separation logic op-
erator saying that instead of 𝑃 we have a slightly weaker
approximation to it. The theory of higher-order separation
logic has been well studied, and the addition of higher-order
separation logic into the conjunction rule proving does not
affect the proof idea, so we omit the details in this report.

We use 𝑒⇓ to say that the evaluation of 𝑒 is valid, and 𝑒 ⇓𝑣
to say that the evaluation of 𝑒 is valid and the result of the
evaluation is value 𝑣 .&𝑒⇓𝑝 is used to denote that evaluating
𝑒 results in a valid addressable variable at the address 𝑝 in
the heap.

In fact, the VST formalization of the abstract Clight lan-
guage discriminates between thememory load and themem-
ory write operation (both of which are denoted as 𝑒1 := 𝑒2
in the text) syntactically with two different Inductive type
constructors Sset and Sassign.

For the Sset constructor, which indicates assigning a value
to a non-addressable variable, there are two corresponding
rules, namely Semax-Set and Semax-Load. The following
inversion rule is derivable.

Lemma 3.2 (Inversion on Sset). If {𝑃} x := 𝑒
{
𝑄, [®𝑄 ′]

}
,

then
𝑃 ⊨ ▷ (𝑒 ⇓ ∧𝑄 [𝑒/x]) ∨

∃𝜋 𝑝 𝑣. 𝜋 is readable share ∧
▷ (&𝑒 ⇓ 𝑝 ∧ (𝑝 ↦→𝜋 𝑣 ∗ True) ∧𝑄 [𝑣/x])

The two disjunction components on the RHS correspond
to Semax-Set and Semax-Load respectively, depending on
whether the value of 𝑒 is addressable or not. The two cases
are disjoint from each other. Therefore, when we do induc-
tion on the statement 𝑐 , we only need to consider the case
where both premises use the same logical rule.

For the Semax-Set case, the conjunction rule holds di-
rectly since the variable substitution [𝑒/x] is the same for
both premises.

For the Semax-Load case, issue arises that the permission
shares that the two premises use may not be the same, nei-
ther are the values referenced by 𝑒 . The intuition that “if
a location can be described by two mapsto predicates with
readable permission simultaneously, then the values of the
mapsto predicates are the same” can only be justified if we
look into the semantic models.

We use ⊕ to denote the join relations in separation alge-
bra. The semantic model (known as resource map) of VST,
and the permission shares are two instances of the separa-
tion algebra. Due to the existence of ghost states, the join
relation on resource map does not enjoy some properties of
the join relation on permission shares, such as the cross split
property and the cancellative property.
Proposition 3.3 (Cross Split Property). A join relation for
permission-shares has the cross split property if 𝜋 = 𝜋𝑎 ⊕𝜋𝑏 ∧
𝜋 = 𝜋𝑐 ⊕𝜋𝑑 ⇒ ∃𝜋𝑎𝑐 𝜋𝑎𝑑 𝜋𝑏𝑐 𝜋𝑏𝑑 , 𝜋𝑎𝑐 ⊕𝜋𝑎𝑑 = 𝜋𝑎∧𝜋𝑏𝑐 ⊕𝜋𝑏𝑑 =
𝜋𝑏 ∧ 𝜋𝑎𝑐 ⊕ 𝜋𝑏𝑐 = 𝜋𝑐 ∧ 𝜋𝑎𝑑 ⊕ 𝜋𝑏𝑑 = 𝜋𝑑 .

Proposition 3.4 (Cancellative Property). A join relation for
permission-shares has the cancellative property if 𝜋 = 𝜋𝑎 ⊕
𝜋𝑏 ∧ 𝜋 = 𝜋𝑎′ ⊕ 𝜋𝑏 ⇒ 𝜋𝑎 = 𝜋𝑎′ .

Therefore, proofs for memory loading/writing will look
into the location of the value being loaded/stored on the re-
source map, so that we can make use of properties of the
join relation on permission shares. We use 𝑟@𝑙 to refer to
the resource on location 𝑙 of the model 𝑟 .
Following the idea above, we managed to prove the fol-

lowing lemma that derives the conjunction rule for Semax-
Load.
Theorem 3.5. If 𝜋1 and 𝜋2 are readable shares, then

(𝑝 ↦→𝜋1
𝑣1 ∗ True) ∧ (𝑝 ↦→𝜋2

𝑣2 ∗ True)
⊨ 𝑣1 = 𝑣2 ∧ 𝑝 ↦→𝜋1∪𝜋2

𝑣1 ∗ True
Proof. Given a model 𝑟 that satisfy the LHS of the theorem,
by the semantics of ∗, there are two ways to disjointly split
this model, say 𝑟 = 𝑟1 ⊕ 𝑟 ′1 and 𝑟 = 𝑟2 ⊕ 𝑟 ′2, where 𝑟1 |=
𝑝 ↦→𝜋1

𝑣1 and 𝑟2 |= 𝑝 ↦→𝜋2
𝑣2.

Technical Report, April 2022, SJTU, Shanghai L. Zhou

To show 𝑣1 = 𝑣2, it suffices to show that the resources
on location 𝑙 referenced by 𝑝 in 𝑟1 and 𝑟2 are equal. This is
done by inversion on the join relation since both 𝑟1 and 𝑟2
are part of the same model 𝑟 .

As for the second part, we can pointwisely define the two
models 𝑟0, 𝑟 ′0 that constitute 𝑝 ↦→𝜋1∪𝜋2

𝑣1 ∗ True.
For locations 𝑙 referenced by 𝑝 , let the share of 𝑟@𝑙 be 𝜋 .

From the cross split property of permission shares, we have
(𝜋1 ∪𝜋2) ⊕ (𝜋 ∩ (¬(𝜋1 ∪𝜋2))) = 𝜋 . We can define 𝑟0@𝑙 and
𝑟 ′0@𝑙 to hold the two sub shares as above respectively. For
other locations, we can simply take 𝑟0@𝑙 and 𝑟 ′0@𝑙 to be 𝑟1@𝑙
and 𝑟 ′1@𝑙 . It follows that 𝑟0 ⊕ 𝑟 ′0 = 𝑟 and 𝑟0 |= 𝑝 ↦→𝜋1∪𝜋2

𝑣1.
□

3.3 Preciseness of memory write
Sassign constructor corresponds to the Semax-StoRe rule,
which first loads the value of 𝑒2 from the memory and then
assigns it to 𝑒1. The Semax-Assign rule is formalized as a
backward rule using magic wand −∗. Before executing the
statement, themodel should be split into two parts. One part
is the model that satisfies the 𝑝 ↦→𝜋 𝑣 predicate. The other
part should satisfy the post-condition 𝑃 when joined with
a model where the new value 𝑣 ′ is assigned. The inversion
lemma for memory writing is as follows:
Lemma 3.6 (Inversion on Sassign).
If {𝑃} 𝑒1 := 𝑒2

{
𝑄, [®𝑄 ′]

}
, then

𝑃 ⊨ ∃𝜋 𝑝 𝑣 𝑣 ′. 𝜋 is writable share ∧

▷
(
&𝑒1 ⇓ 𝑝 ∧ 𝑒2 ⇓ 𝑣 ′∧
(𝑝 ↦→𝜋 𝑣 ∗ (𝑝 ↦→𝜋 𝑣 ′ −∗ 𝑄))

)
After applying Lemma 3.6 on premises of the conjunction

rule, the proof obligation left is as follows, which also re-
quires model-level proving.
Theorem 3.7. If 𝜋1 and 𝜋2 are writable shares, then

(𝑝 ↦→𝜋1
𝑣1 ∗ (𝑝 ↦→𝜋1

𝑣 ′ −∗ 𝑃1))
∧(𝑝 ↦→𝜋2

𝑣2 ∗ (𝑝 ↦→𝜋2
𝑣 ′ −∗ 𝑃2))

⊨ 𝑣1 = 𝑣2 ∧ 𝑝 ↦→𝜋1∪𝜋2
𝑣1 ∗ (𝑝 ↦→𝜋1∪𝜋2

𝑣 ′ −∗ 𝑃1 ∧ 𝑃2)
Proof. For any model 𝑟 that satisfies the LHS of the deriva-
tion, there are two ways to disjointly split this model, say
𝑟 = 𝑟𝜋1

↦→ ⊕ 𝑟𝜋1
rem and 𝑟 = 𝑟𝜋2

↦→ ⊕ 𝑟𝜋2
rem, where 𝑟𝜋1

↦→ |= 𝑝 ↦→𝜋1
𝑣1

and 𝑟𝜋2
↦→ |= 𝑝 ↦→𝜋2

𝑣2.
Applying Theorem 3.5, we can show that 𝑣1 = 𝑣2 and

that there exists a splitting for 𝑟 = 𝑟𝜋1∪𝜋2
↦→ ⊕ 𝑟𝜋1∪𝜋2

rem where
𝑟𝜋1∪𝜋2
↦→ |= 𝑝 ↦→𝜋1∪𝜋2

𝑣1.
We are left to prove that given any model 𝑟 ′↦→ that satis-

fies 𝑝 ↦→𝜋1∪𝜋2
𝑣1, 𝑟 ′↦→ ⊕ 𝑟𝜋1∪𝜋2

rem satisfies 𝑃1 ∧ 𝑃2. Without
loss of generality, we show that 𝑟 ′↦→ ⊕ 𝑟𝜋1∪𝜋2

rem = 𝑟 ′ |= 𝑃1. Fig-
ure 9 plots the layout of the join relations that have been
introduced so far in the proof.

To prove a model satisfying 𝑃1, we must make use of the
fact that 𝑟𝜋1

rem |= 𝑝 ↦→𝜋1
𝑣 ′ −∗ 𝑃1 The only way to relate

𝑟 ′ with 𝑟𝜋1
rem is through 𝑟𝜋1∪𝜋2

rem , the common sub-model of

𝑟 ′ 𝑟

𝑟𝜋1
rem 𝑟𝜋1

↦→

𝑟 ′↦→

𝑟
𝜋 ′
1

↦→ 𝑟𝜋2/𝜋1
↦→ 𝑟𝜋1∪𝜋2

rem 𝑟𝜋1∪𝜋2
↦→

Figure 9. Semantic model layout for the proof of Theorem
3.7. (Dotted lines indicate the join relation to be proved)

𝑟 ′ and 𝑟 . The idea is to “borrow” a sub-model from 𝑟 ′↦→, to
supplement the model 𝑟𝜋1∪𝜋2

rem , so that the supplement can
be matched with 𝑟𝜋1

rem.
Based on this observation, we construct twomodels, which

are defined as

𝑟
𝜋 ′
1

↦→@𝑙 =

{
[𝑟 ′↦→@𝑙/𝜋1] if 𝑙 referenced by 𝑝
𝑟 ′↦→@𝑙 otherwise

𝑟𝜋2/𝜋1
↦→ @𝑙 =

{
[𝑟 ′↦→@𝑙/(𝜋2/𝜋1)] if 𝑙 referenced by 𝑝
⊥ otherwise

, where [𝑟@𝑙/𝜋] indicates a resource on location 𝑙 that has
the same value as 𝑟@𝑙 but with the permissions reassigned
as 𝜋 .The two dotted join relations in Figure 9 can be verified.

1. 𝑟 ′↦→ = 𝑟
𝜋 ′
1

↦→ ⊕ 𝑟𝜋2/𝜋1
↦→ follows directly from the fact that

𝜋1 ∪ 𝜋2 = 𝜋1 ⊕ (𝜋2/𝜋1).
2. 𝑟𝜋1

rem = 𝑟𝜋2/𝜋1
↦→ ⊕𝑟𝜋1∪𝜋2

rem requires inversion on 𝑟 = 𝑟𝜋1
rem⊕

𝑟𝜋1
↦→ and 𝑟 = 𝑟𝜋1∪𝜋2

rem ⊕ 𝑟𝜋1∪𝜋2
↦→ .

For 𝑙 referenced by 𝑝 , let the permissions for 𝑟@𝑙 , 𝑟𝜋1
rem@𝑙

and 𝑟𝜋1∪𝜋2
rem @𝑙 be 𝜋 , 𝜋3 and 𝜋4 respectively. Then, we

have 𝜋 = 𝜋3 ⊕ 𝜋1 and 𝜋 = 𝜋4 ⊕ (𝜋1 ∪ 𝜋2). To prove
𝑟𝜋1
rem@𝑙 = 𝑟𝜋2/𝜋1

↦→ @𝑙 ⊕ 𝑟𝜋1∪𝜋2
rem @𝑙 , it suffices to show that

𝜋3 = (𝜋2/𝜋1) ⊕ 𝜋4. The cancellative property is used
here.
For 𝑙 not referenced by 𝑝 , no resources are defined
on 𝑟𝜋1

↦→ and 𝑟𝜋1∪𝜋2
↦→ , so 𝑟𝜋1

rem and 𝑟𝜋1∪𝜋2
rem are the same.

Since we define no resources for 𝑟𝜋2/𝜋1
↦→ , the join rela-

tion holds.
Based on the two join relations discovered above, we can

use the associativity property of the join relation to show
𝑟 ′ = 𝑟𝜋1

rem ⊕ 𝑟
𝜋 ′
1

↦→ . Then 𝑟 ′ |= 𝑃1 follows from the premise that
𝑟𝜋1
rem |= 𝑝 ↦→𝜋1

𝑣 ′ −∗ 𝑃1.
□

3.4 Function call with precise specifications
A function specification is denoted as [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄}, where
𝑃 is a precondition parameterized by a list of formal param-
eters ®𝑦, 𝑄 is a postcondition parameterized by the return
value 𝑟 , and types ®𝐴 is the type of values that is to be shared
between 𝑃 and 𝑄 , so both 𝑃 and 𝑄 will also be abstracted
over variables of the shared types 𝐴.

Assertion annotated program verification
with control flow splitting Technical Report, April 2022, SJTU, Shanghai

The Semax-Call rule is formalized as a backward rule.
For the function name 𝑓 to be called, its specification will
first be looked up in the typing context Δ, users may choose
to apply the specification directly, or apply another specifi-
cation that is subsumed by the one in Δ. The first choice is
available because the subsumption relation is reflexive. The
definition of function subsumption is given below, note that
the framing of the specification is also incorporated into the
definition.

Definition 3.8 (Function subsumption). A function speci-
fication [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} is subsumed by another function
specification [®𝐴′]{𝜆®𝑦.𝑃 ′} {𝜆𝑟 .𝑄 ′} if

∀ ®𝑥 ′ : ®𝐴′. ∀®𝑏. 𝑃 ′ ®𝑏 ®𝑥 ′

⊨ ∃®𝑥 : ®𝐴. ∃𝐹 . 𝐹 ∗ 𝑃 ®𝑏 ®𝑥∧
(∀𝑎. 𝐹 ∗𝑄 𝑎 ®𝑥 ⊨ 𝑄 ′ 𝑎 ®𝑥 ′)

Thebody of the rule states that, before executing the state-
ment, the model should be split into two parts, a part that
satisfies the specification’s pre-condition, and a part that sat-
isfies the call statement’s post-condition when joined with
a model that satisfies the specification’s post-condition.

The Semax-Call rule we use in our system is almost the
same as what the current VST release defines, except that
we strengthen the pre-condition by moving the existential
variables shared by the pre-/post-condition of the function
specification to be called into the ▷ operator. We note such
a change is necessary to prove the conjunction rule for the
call statement. As a comparison, the pre-condition in the
VST version looks like the follows:{

∃®𝑥 : ®𝐴. ▷ (®𝑒 ⇓ ®𝑏 ∧ 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 a ®𝑥 −∗ 𝑅))
}

Besides, we also enforce that the function specification to
be called is “precise”, defined as follows.

Definition 3.9 (Precise function specification). A function
specification [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} is precise if for any formal
parameters ®𝑏, return value 𝑎 and assertions 𝑅1, 𝑅2, it holds
that

(∃ ®𝑥1 : ®𝐴. 𝑃 ®𝑏 ®𝑥1 ∗ (𝑄 𝑎 ®𝑥1 −∗ 𝑅1))
∧(∃ ®𝑥2 : ®𝐴. 𝑃 ®𝑏 ®𝑥2 ∗ (𝑄 𝑎 ®𝑥2 −∗ 𝑅2))

⊨ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 𝑎 ®𝑥2 −∗ 𝑅1 ∧ 𝑅2)

The definition looks very similar to Theorem 9 that we
have proved for the memory writing operation, which can
serve as a justification for our definition.

Note that the notion of “precise” we propose is defined
with respect to an operation (either an operation on the
memory or a function call), while traditionally, “precise” is
defined for a predicate in the assertion. A typical example
of precise predicates is the 𝑝 ↦→ 𝑣 predicate we have seen
before.

Definition 3.10 (Precise predicate). A predicate 𝑃 is pre-
cise if for any 𝑄1, 𝑄2,

(𝑃 ∗𝑄1) ∧ (𝑃 ∗𝑄2) = 𝑃 ∗ (𝑄1 ∧𝑄2)
Clearly, if we remove the existential quantifier ®𝐴 from

Definition 3.9, then all function specifications written with
precise predicates are precise. Therefore, we consider our
definition of precise function specification fits into a more
general setting, allowing the instantiations of the function
specification to be different, while still being able to derive
the conjunction rule of function calls, as we will see below.
The proof of conjunction rule for function calls also be-

gins with inversion on premises.
Lemma 3.11 (Inversion on function call). If
{𝑆} a := 𝑓 (®𝑒)

{
𝑅, [®𝑅′]

}
, then

𝑆 ⊨ ∃𝐴 (𝜆®𝑦.𝑃) (𝜆𝑟 .𝑄) ®𝑏.
Δ(𝑓) <: [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} ∧
Δ(𝑓) is a precise specification ∧

▷

(
®𝑒 ⇓ ®𝑏∧
∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 a ®𝑥 −∗ 𝑅)

)
By applying Lemma 3.11, the proof obligation is left as

follows.
Theorem 3.12. If Δ(𝑓) = [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄}, Δ(𝑓) is a pre-
cise function specification and

[®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} <: [®𝐴1]{𝜆®𝑦.𝑃1} {𝜆𝑟 .𝑄1}
[®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} <: [®𝐴2]{𝜆®𝑦.𝑃2} {𝜆𝑟 .𝑄2}

then

(∃ ®𝑥1 : ®𝐴1 . 𝑃1 ®𝑏 ®𝑥1 ∗ (𝑄1 𝑎 ®𝑥1 −∗ 𝑅1))
∧(∃ ®𝑥2 : ®𝐴2 . 𝑃2 ®𝑏 ®𝑥2 ∗ (𝑄2 𝑎 ®𝑥2 −∗ 𝑅2))

⊨ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 𝑎 ®𝑥2 −∗ 𝑅1 ∧ 𝑅2)
To apply the condition that Δ(𝑓) is a precise function

specification, we need to rewrite the assertion with the sub-
sumption relation.
Lemma 3.13. If [®𝐴]{𝜆®𝑦.𝑃} {𝜆𝑟 .𝑄} <: [®𝐴′]{𝜆®𝑦.𝑃 ′} {𝜆𝑟 .𝑄 ′},
then for any formal parameters ®𝑏, return value 𝑎 and assertion
𝑅,

∃ ®𝑥 ′ : ®𝐴′. 𝑃 ′ ®𝑏 ®𝑥 ′∗ (𝑄 ′ 𝑎 ®𝑥 ′ −∗ 𝑅) ⊨ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 𝑎 ®𝑥 −∗ 𝑅)
Proof. By logical derivation,

𝑃 ′ ®𝑏 ®𝑥 ′ ∗ (𝑄 ′ 𝑎 ®𝑥 ′ −∗ 𝑅)
⊨ (∃®𝑥 : ®𝐴. ∃𝐹 . 𝐹 ∗ 𝑃 ®𝑏 ®𝑥 ∧ (∀𝑎. 𝐹 ∗𝑄 𝑎 ®𝑥 ⊨ 𝑄 ′ 𝑎 ®𝑥 ′))

∗(𝑄 ′ 𝑎 ®𝑥 ′ −∗ 𝑅)
⊨ ∃®𝑥 : ®𝐴. ∃𝐹 . (∀𝑎. 𝐹 ∗𝑄 𝑎 ®𝑥 ⊨ 𝑄 ′ 𝑎 ®𝑥 ′)∧

𝐹 ∗ 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 ′ 𝑎 ®𝑥 ′ −∗ 𝑅)
⊨ ∃®𝑥 : ®𝐴. ∃𝐹 . (𝐹 ∗𝑄 𝑎 ®𝑥 ⊨ 𝑄 ′ 𝑎 ®𝑥 ′)∧

𝐹 ∗ 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 ′ 𝑎 ®𝑥 ′ −∗ 𝑅)
⊨ ∃®𝑥 : ®𝐴. ∃𝐹 . 𝐹 ∗ 𝑃 ®𝑏 ®𝑥 ∗ (𝐹 ∗𝑄 𝑎 ®𝑥 −∗ 𝑅)
⊨ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 𝑎 ®𝑥 −∗ 𝑅)

Technical Report, April 2022, SJTU, Shanghai L. Zhou

□

Above, we have completed all the conjunction rule proof
for the stronger program logic we have defined for VST-A.

Last Updated on May 2, 2022.

	Abstract
	1 Overview of the framework
	2 Path split and its soundness
	2.1 Clight-A: Annotated C language
	2.2 Split result interface
	2.3 Interpreting split result
	2.4 The split function
	2.5 Soundness

	3 Conjunction rule
	3.1 Proving the conjunction rule in VST
	3.2 Conjunction rule for memory load
	3.3 Preciseness of memory write
	3.4 Function call with precise specifications

